首页

2024年新高考数学一轮复习题型归类与强化测试专题40数列的综合应用(Word版附解析)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/19

2/19

剩余17页未读,查看更多内容需下载

专题40数列的综合应用知识梳理考纲要求方法技巧题型归类题型一:数学文化与数列的实际应用题型二:等差、等比数列的综合题型三:数列与其他知识的交汇培优训练训练一:训练二:训练三:训练四:训练五:训练六:强化测试单选题:共8题多选题:共4题填空题:共4题解答题:共6题一、【知识梳理】【考纲要求】1.了解数列是一种特殊的函数,会解决等差、等比数列的综合问题.2.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.【方法技巧】1.数列应用问题常见模型(1)等差模型:后一个量比前一个量增加(或减少)的是同一个固定值.(2)等比模型:后一个量与前一个量的比是同一个固定的非零常数.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,那么应考虑an与an+1(或者相邻三项)之间的递推关系,或者Sn与Sn+1(或者相邻三项)之间的递推关系.2.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.数列的求和主要是等差、等比数列的求和及裂项相消法求和与错位相减法求和,本题中利用裂项相消法求数列的和,然后利用b1=1,d>0证明不等式成立.另外本题在探求{an}与{cn}的通项公式时,考查累加、累乘两种基本方法.3.数列与函数、不等式的综合问题关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前n项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩进行不等式的证明.二、【题型归类】【题型一】数学文化与数列的实际应用【典例1】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后 一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)(  )A.3699块B.3474块C.3402块D.3339块【解析】设每一层有n环,由题意可知,从内到外每环之间构成公差为d=9,首项为a1=9的等差数列.由等差数列的性质知Sn,S2n-Sn,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-Sn)=n2d,则9n2=729,解得n=9,则三层共有扇面形石板S3n=S27=27×9+×9=3402(块).故选C.【典例2】某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm三种规格的图形,它们的面积之和S2=180dm2,以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n次,那么k=_______dm2.【解析】依题意得,S1=120×2=240;S2=60×3=180;当n=3时,共可以得到5dm×6dm,dm×12dm,10dm×3dm,20dm×dm四种规格的图形,且5×6=30,×12=30,10×3=30,20×=30,所以S3=30×4=120;当n=4时,共可以得到5dm×3dm,dm×6dm,dm×12dm,10dm×dm,20dm×dm五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15,×6=15,×12=15,10×=15,20×=15, 所以S4=15×5=75;……所以可归纳Sk=×(k+1)=.所以k=240,①所以×k=240,②由①-②得,×k=240=240=240,所以k=240dm2.【典例3】《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,前三个节气日影长之和为28.5尺,最后三个节气日影长之和为1.5尺,今年3月20日为春分时节,其日影长为(  )A.4.5尺B.3.5尺C.2.5尺D.1.5尺【解析】冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长构成等差数列{an},设公差为d,由题意得,解得所以an=a1+(n-1)d=11.5-n,所以a7=11.5-7=4.5,即春分时节的日影长为4.5尺.故选A.【题型二】等差、等比数列的综合 【典例1】设{an}是等差数列,且a1=ln2,a2+a3=5ln2.(1)求{an}的通项公式;(2)求ea1+ea2+…+ean.【解析】(1)设{an}的公差为d.因为a2+a3=5ln2,所以2a1+3d=5ln2.又a1=ln2,所以d=ln2.所以an=a1+(n-1)d=nln2.(2)因为ea1=eln2=2,=ean-an-1=eln2=2,所以{ean}是首项为2,公比为2的等比数列.所以ea1+ea2+…+ean=2×=2(2n-1)=2n+1-2.【典例2】设Sn为数列{an}的前n项和,已知a2=3,an+1=2an+1.(1)证明:{an+1}为等比数列;(2)求{an}的通项公式,并判断n,an,Sn是否成等差数列?说明理由.【解析】(1)证明:因为a2=3,a2=2a1+1,所以a1=1,因为an+1=2an+1,所以an+1+1=2(an+1),所以{an+1}是首项为2,公比为2的等比数列.(2)由(1)知,an+1=2n,所以an=2n-1,所以Sn=-n=2n+1-n-2,所以n+Sn-2an=n+2n+1-n-2-2(2n-1)=0,所以n+Sn=2an,即n,an,Sn成等差数列.【典例3】已知等差数列{an}和等比数列{bn}满足a1=2,b2=4,an=2log2bn,n∈N*.(1)求数列{an},{bn}的通项公式;(2)设数列{an}中不在数列{bn}中的项按从小到大的顺序构成数列{cn},记数列{cn}的前n项和为Sn,求S100.【解析】(1)设等差数列{an}的公差为d,因为b2=4,所以a2=2log2b2=4,所以d=a2-a1=2,所以an=2+(n-1)×2=2n.又an=2log2bn,即2n=2log2bn,所以n=log2bn,所以bn=2n.(2)由(1)得bn=2n=2·2n-1=a2n-1, 即bn是数列{an}中的第2n-1项.设数列{an}的前n项和为Pn,数列{bn}的前n项和为Qn,因为b7==a64,b8==a128,所以数列{cn}的前100项是由数列{an}的前107项去掉数列{bn}的前7项后构成的,所以S100=P107-Q7=-=11302.【题型三】数列与其他知识的交汇【典例1】已知数列{an}是公比不等于1的正项等比数列,且lga1+lga2021=0,若函数f(x)=,则f(a1)+f(a2)+…+f(a2021)=(  )A.2020B.4040C.2021D.4042【解析】因为数列{an}是公比不等于1的正项等比数列,且lga1+lga2021=0,所以lg(a1·a2021)=0,即a1·a2021=1.因为函数f(x)=,所以f(x)+f=+==2,所以f(a1)+f(a2021)=2.令T=f(a1)+f(a2)+…+f(a2021).则T=f(a2021)+f(a2020)+…+f(a1).所以2T=f(a1)+f(a2021)+f(a2)+f(a2020)+…+f(a2021)+f(a1)=2×2021,所以T=2021.故选C.【典例2】已知Sn是数列{an}的前n项和,a1=1,且∀n∈N*,2Sn=(n+1)an,bn=Sn,则数列{bn}的前2020项之和T2020=________.【解析】因为2Sn=(n+1)an①,所以当n≥2时,2Sn-1=nan-1②,①-②得,2an=(n+1)an-nan-1,即(n-1)an=nan-1(n≥2),两边同时除以n(n-1),得=(n≥2),即数列为常数列, 故==1,an=n,于是Sn=,于是bn=,令cn=b4n-3+b4n-2+b4n-1+b4n(n∈N*),则cn=×(0+1)+×(-1+0)+×(0-1)+×(1+0)=2,于是T2020=c1+c2+…+c505=2×505=1010.【典例3】设数列{an}的通项公式为an=2n-1,记数列的前n项和为Tn,若对任意的n∈N*,不等式4Tn<a2-a恒成立,则实数a的取值范围为________.【解析】因为an=2n-1,所以==,所以Tn==<,又4Tn<a2-a,所以2≤a2-a,解得a≤-1或a≥2,即实数a的取值范围为(-∞,-1]∪[2,+∞).三、【培优训练】【训练一】已知数列{an}满足an+am=am+n(m,n∈N*)且a1=1,若[x]表示不超过x的最大整数,则数列的前10项和为(  )A.12B.C.24D.40【解析】数列{an}满足an+am=am+n(m,n∈N*)且a1=1,所以令m=1,可得an+a1=an+1,可得an+1-an=1, 所以数列{an}为等差数列,公差为1,首项为1.所以an=1+n-1=n,所以a2n+3=2n+3.令=f(n),则当1≤n≤3时,f(n)=1;4≤n≤5时,f(n)=2;6≤n≤8时,f(n)=3,n=9,10时,f(n)=4.所以数列的前10项和为1×3+2×2+3×3+4×2=24.故选C.【训练二】(多选)已知在△ABC中,A1,B1分别是边BA,CB的中点,A2,B2分别是线段A1A,B1B的中点,…,An,Bn分别是线段An-1A,Bn-1B(n∈N*,n>1)的中点,设数列{an},{bn}满足=an+bn(n∈N*),给出下列四个结论,其中正确的是(  )A.数列{an}是递增数列,数列{bn}是递减数列B.数列{an+bn}是等比数列C.数列{}(n∈N*,n>1)既有最小值,又有最大值D.若在△ABC中,C=90°,CA=CB,则||最小时,an+bn=【解析】由==(-),得=,得=+=+(-)=+,所以an=1-,bn=-1,则数列{an}是递增数列,数列{bn}是递减数列,故A正确;数列{an+bn}中,an+bn=,a1+b1=,即数列{an+bn}是首项为,公比为的等比数列,故B正确;当n>1时,在数列中,==-1+,所以数列递增,有最小值,无最大值,故C错误;若在△ABC中,C=90°,CA=CB,则||2=(a+b)·CA2+2anbn·=(a+b)2,a+b=+=5×-6×+2=5+,当n=1时,a+b取得最小值,故当||最小时, an+bn=,故D正确.故选ABD.【训练三】某地区2018年人口总数为45万.实施“二孩”政策后,专家估计人口总数将发生如下变化:从2019年开始到2028年,每年人口总数比上一年增加0.5万人,从2029年开始到2038年,每年人口总数为上一年的99%.(1)求实施“二孩”政策后第n年的人口总数an(单位:万人)的表达式(注:2019年为第一年);(2)若“二孩”政策实施后的2019年到2038年人口平均值超过49万,则需调整政策,否则继续实施,问到2038年结束后是否需要调整政策?(参考数据:0.9910≈0.9)【解析】(1)由题意知,当1≤n≤10时,数列{an}是首项为45.5,公差为0.5的等差数列,可得an=45.5+0.5×(n-1)=0.5n+45,则a10=50;当11≤n≤20时,数列{an}是公比为0.99的等比数列,则an=50×0.99n-10.故实施“二孩”政策后第n年的人口总数an(单位:万人)的表达式为an=(2)设Sn为数列{an}的前n项和.从2019年到2038年共20年,由等差数列及等比数列的求和公式得S20=S10+(a11+a12+…+a20)=477.5+4950×(1-0.9910)≈972.5.所以“二孩”政策实施后的2019年到2038年人口平均值为≈48.63,则<49,故到2038年结束后不需要调整政策.【训练四】已知在等差数列{an}中,a2=5,a4+a6=22,在数列{bn}中,b1=3,bn=2bn-1+1(n≥2).(1)分别求数列{an},{bn}的通项公式;(2)定义x=[x]+(x),[x]是x的整数部分,(x)是x的小数部分,且0≤(x)<1.记数列{cn}满足cn=,求数列{cn}的前n项和.【解析】(1)设等差数列{an}的公差为d,因为a2=5,a4+a6=22,所以a5==11,所以d==2,所以an=a2+2(n-2)=5+2(n-2)=2n+1.又b1=3,bn+1=2(bn-1+1)(n≥2),所以{bn+1}是首项为4,公比为2的等比数列,所以bn+1=2n+1(n≥2),所以bn=2n+1-1(n≥2).易知b1=3满足上式,所以bn=2n+1-1(n∈N*).(2)由二项式定理知,当n≥1时,2n+1=2(1+1)n≥2(C+C)=2(1+n)>2n+1,所以cn==,所以Sn=+++…+①, Sn=+++…+②,①-②,得Sn=++++…+-=+--=-,故Sn=-.【训练五】由整数构成的等差数列{an}满足a3=5,a1a2=2a4.(1)求数列{an}的通项公式;(2)若数列{bn}的通项公式为bn=2n,将数列{an},{bn}的所有项按照“当n为奇数时,bn放在前面;当n为偶数时,an放在前面”的要求进行“交叉排列”,得到一个新数列{cn},b1,a1,a2,b2,b3,a3,a4,b4,…,求数列{cn}的前(4n+3)项和T4n+3.【解析】(1)由题意,设数列{an}的公差为d,因为a3=5,a1a2=2a4,可得整理得(5-2d)(5-d)=2(5+d),即2d2-17d+15=0,解得d=或d=1,因为{an}为整数数列,所以d=1,又由a1+2d=5,可得a1=3,所以数列{an}的通项公式为an=n+2.(2)由(1)知,数列{an}的通项公式为an=n+2,又由数列{bn}的通项公式为bn=2n,根据题意,得新数列{cn},b1,a1,a2,b2,b3,a3,a4,b4,…,则T4n+3=b1+a1+a2+b2+b3+a3+a4+b4+…+b2n-1+a2n-1+a2n+b2n+b2n+1+a2n+1+a2n+2=(b1+b2+b3+b4+…+b2n+1)+(a1+a2+a3+a4+…+a2n+2)=+=4n+1+2n2+9n+5.【训练六】已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-1,求数列{bn}的前n项和Tn.【解析】(1)∵等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列,∴Sn=na1+n(n-1), (2a1+2)2=a1(4a1+12),解得a1=1,∴an=2n-1.(2)由(1)可得bn=(-1)n-1=(-1)n-1,当n为偶数时,Tn=-+-…+-=1-=;当n为奇数时,Tn=-+-…-+=1+=.∴Tn=四、【强化测试】【单选题】1.等比数列{an}中,a5,a7是函数f(x)=x2-4x+3的两个零点,则a3·a9等于(  )A.-3B.3C.-4D.4【解析】∵a5,a7是函数f(x)=x2-4x+3的两个零点,∴a5,a7是方程x2-4x+3=0的两个根,∴a5·a7=3,由等比数列的性质可得a3·a9=a5·a7=3.故选B.2.已知等差数列{an}的前n项和为Sn,公差为-2,且a7是a3与a9的等比中项,则S10的值为(  )A.-110B.-90C.90D.110【解析】∵a7是a3与a9的等比中项,∴a=a3a9,又数列{an}的公差为-2,∴(a1-12)2=(a1-4)(a1-16),解得a1=20,∴an=20+(n-1)×(-2)=22-2n,∴S10==5×(20+2)=110.故选D. 3.若等差数列{an}的公差d≠0且a1,a3,a7成等比数列,则等于(  )A.B.C.D.2【解析】设等差数列的首项为a1,公差为d,则a3=a1+2d,a7=a1+6d.因为a1,a3,a7成等比数列,所以(a1+2d)2=a1(a1+6d),解得a1=2d.所以==.故选A.4.某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高42万元,第七实验室比第四实验室的改建费用高168万元,并要求每个实验室改建费用不能超过1700万元.则该研究所改建这十个实验室投入的总费用最多需要(  )A.3233万元B.4706万元C.4709万元D.4808万元【解析】设每个实验室的装修费用为x万元,设备费为an万元(n=1,2,3,…,10),则所以解得故a10=a1q9=1536.依题意x+1536≤1700,即x≤164.所以总费用为10x+a1+a2+…+a10=10x+=10x+3069≤4709.故选C.5.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品,计划从2020年开始每年比上一年获利增加20%,则从(  )年开始这家加工厂年获利超过60万元,已知lg2≈0.3010,lg3≈0.4771(  )A.2024年B.2025年C.2026年D.2027年【解析】由题意,设从2019年开始,第n年的获利为an(n∈N*)万元,则数列{an}为等比数列,其中2019年的获利为首项,即a1=20.2020年的获利为a2=20·(1+20%)=20×(万元),2021年的获利为a3=20×(1+20%)2=20·2(万元),∴数列{an}的通项公式为an=20·n-1(n∈N*), 由题意可得an=20·n-1>60,即n-1>3,∴n-1>====≈≈6.0316>6,∴n≥8,∴从2026年开始这家加工厂年获利超过60万元.故选C.6.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3,n∈N*).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{an},则数列{an}的前2019项的和为(  )A.672B.673C.1346D.2019【解析】由于{an}是数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,故{an}为1,1,0,1,1,0,1,1,0,1,…,所以{an}是周期为3的周期数列,且一个周期中的三项之和为1+1+0=2.因为2019=673×3,所以数列{an}的前2019项的和为673×2=1346.故选C.7.已知等差数列{an}的公差为-2,前n项和为Sn.若a2,a3,a4为某三角形的三边长,且该三角形有一个内角为120°,则Sn的最大值为(  )A.5B.11C.20D.25【解析】由等差数列{an}的公差为-2可知该数列为递减数列,则a2,a3,a4中a2最大,a4最小.又a2,a3,a4为三角形的三边长,且最大内角为120°,由余弦定理得a=a+a+a3a4.设首项为a1,则(a1-2)2=(a1-4)2+(a1-6)2+(a1-4)(a1-6),整理得(a1-4)(a1-9)=0,所以a1=4或a1=9.又a4=a1-6>0,即a1>6,故a1=4舍去,所以a1=9.数列{an}的前n项和Sn=9n+×(-2)=-(n-5)2+25.故Sn的最大值为S5=25.故选D.8.定义:若数列{an}对任意的正整数n,都有|an+1|+|an|=d(d为常数),则称|an|为“绝对和数列”,d叫做“绝对公和”.已知“绝对和数列”{an}中,a1=2,绝对公和为3,则其前2019项的和S2019的最小值为(  )A.-2019B.-3010C.-3025D.-3027 【解析】依题意,要使“绝对和数列”{an}前2019项的和S2019的值最小,只需每一项的值都取最小值即可.因为a1=2,绝对公和d=3,所以a2=-1或a2=1(舍),所以a3=-2或a3=2(舍),所以a4=-1或a4=1(舍),…,所以满足条件的数列{an}的通项公式an=所以S2019=a1+(a2+a3)+(a4+a5)+…+(a2018+a2019)=2+(-1-2)×=-3025,故选C.【多选题】9.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…,设各层球数构成一个数列{an},则(  )A.a4=12B.an+1=an+n+1C.a100=5050D.2an+1=an·an+2【解析】由题意知,a1=1,a2=3,a3=6,…,an=an-1+n,故an=,∴a4==10,故A错误;an+1=an+n+1,故B正确;a100==5050,故C正确;2an+1=(n+1)(n+2),an·an+2=,显然2an+1≠an·an+2,故D错误.故选BC.10.已知数列{an}是公差不为0的等差数列,前n项和为Sn,满足a1+5a3=S8,下列选项正确的有(  )A.a10=0B.S10最小C.S7=S12D.S20=0【解析】根据题意,数列{an}是等差数列,若a1+5a3=S8, 即a1+5a1+10d=8a1+28d,变形可得a1=-9d,又由an=a1+(n-1)d=(n-10)d,则有a10=0,故A一定正确;不能确定a1和d的符号,不能确定S10最小,故B不正确;又由Sn=na1+=-9nd+=×(n2-19n),则有S7=S12,故C一定正确;则S20=20a1+d=-180d+190d=10d,∵d≠0,∴S20≠0,则D不正确.故选AC.11.若数列{an}满足:对任意的n∈N*且n≥3,总存在i,j∈N*,使得an=ai+aj(i≠j,i<n,j<n),则称数列{an}是“T数列”.则下列数列是“T数列”的为(  )A.{2n}B.{n2}C.{3n}D.【解析】令an=2n,则an=a1+an-1(n≥3),所以数列{2n}是“T数列”;令an=n2,则a1=1,a2=4,a3=9,所以a3≠a1+a2,所以数列{n2}不是“T数列”;令an=3n,则a1=3,a2=9,a3=27,所以a3≠a1+a2,所以数列{3n}不是“T数列”;令an=,则an=+=an-1+an-2(n≥3),所以数列是“T数列”.故选AD.12.一个弹性小球从100m高处自由落下,每次着地后又跳回原来的高度的再落下.设它第n次着地时,经过的总路程记为Sn,则当n≥2时,下面说法正确的是(  )A.Sn<500B.Sn≤500C.Sn的最小值为D.Sn的最大值为400【解析】第一次着地时,共经过了100m,第二次着地时,共经过了m,第三次着地时,共经过了m,…,以此类推,第n次着地时,共经过了m.所以Sn=100+=100+400.则Sn是关于n的增函数,所以当n≥2时,Sn的最小值为S2,且S2=.又Sn=100 +400<100+400=500.故选AC.【填空题】13.若数列{an}满足-=0,则称{an}为“梦想数列”.已知正项数列{}为“梦想数列”,且b1+b2+b3=1,则b6+b7+b8=________.【解析】由-=0可得an+1=an,故{an}是公比为的等比数列,故{}是公比为的等比数列,则{bn}是公比为2的等比数列,b6+b7+b8=(b1+b2+b3)25=32.14.已知在数列{an}中,an+1=2an-1,a1=2,设其前n项和为Sn,若对任意的n∈N*,(Sn+1-n)k≥2n-3恒成立,则k的最小值为________【解析】由an+1=2an-1,可得an+1-1=2(an-1).又因为a1-1=1,所以数列{an-1}是公比为2,首项为1的等比数列,所以an=1+2n-1,所以Sn=+n=2n-1+n.因为对任意的n∈N*,(Sn+1-n)k≥2n-3恒成立,所以k≥.令bn=,因为bn+1-bn=-=,所以数列{bn}的前3项单调递增,从第3项开始单调递减.所以n=3时,数列{bn}取得最大值b3=,所以k≥.15.若数列{an}满足a2-a1<a3-a2<…<an-an-1<…,则称数列{an}为“差半递增”数列.若数列{an}为“差半递增”数列,且其通项an与前n项和Sn满足Sn=2an+2t-1(n∈N*),则实数t的取值范围是________.【解析】由题意知,Sn=2an+2t-1 ①,当n=1时,a1=2a1+2t-1,得a1=1-2t;当n≥2时,Sn-1=2an-1+2t-1 ②,①-②并化简,得an=2an-1,故数列{an}是以a1=1-2t为首项,2为公比的等比数列,则an=(1-2t)·2n-1,所以an-an-1=(1-2t)·2n-1-·(1-2t)·2n-2=(3-6t)·2n-3,因为数列{an}为“差半递增”数列,所以3-6t>0,解得t<.16.已知等差数列{an}的首项a1及公差d都是实数,且满足++2=0,则d的取值范围是________. 【解析】∵++2=0,∴++2=0,∴5a+10da1+4d2+2=0,∵a1,d∈R,∴Δ=100d2-20(4d2+2)≥0,解得d≥或d≤-.【解答题】17.已知Sn为等差数列{an}的前n项和,且a3=3,S7=14.(1)求an和Sn;(2)若bn=,求{bn}的前n项和Tn.【解析】(1)设等差数列{an}的首项为a1,公差为d,由a3=3,S7=14,得解得∴an=a1+(n-1)d=-n+6,Sn===.(2)由(1)知an=-n+6,bn=,得bn=26-n=26×n,∴Tn==26-26×n=64-26-n.18.已知un=an+an-1b+an-2b2+…+abn-1+bn(a>0,b>0,n∈N*).(1)当a=2,b=3时,求un;(2)若a=b,求数列{un}的前n项和Sn.【解析】(1)当a=2,b=3时,un=2n+2n-1·3+2n-2·32+…+2·3n-1+3n(n∈N*),两边除以2n,得=1++2+…+n-1+n===-2,所以un=3n+1-2n+1.(2)若a=b,则un=(n+1)an, 所以Sn=2a+3a2+4a3+…+(n+1)an,①当a=1时,Sn=2+3+…+(n+1)=;当a>0,a≠1时,在①的两边同乘以a,得aSn=2a2+3a3+4a4+…+(n+1)an+1,与①式作差,得(1-a)Sn=2a+a2+a3+…+an-(n+1)an+1=a+-(n+1)an+1,所以Sn=+-.综上,Sn=19.已知数列{an}的前n项和Sn满足=+1(n≥2,n∈N),且a1=1.(1)求数列{an}的通项公式an;(2)记bn=,Tn为{bn}的前n项和,求使Tn≥成立的n的最小值.【解析】(1)由已知有-=1(n≥2,n∈N),所以数列{}为等差数列,又==1,所以=n,即Sn=n2.当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1.又a1=1也满足上式,所以an=2n-1.(2)由(1)知,bn==,所以Tn===.由Tn≥得n2≥4n+2,即(n-2)2≥6,所以n≥5,所以n的最小值为5.20.定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{an}(n∈N*)满足:a2a4=a5,a3-4a2+4a1=0,求证:数列{an}为“M-数列”;(2)已知数列{bn}(n∈N*)满足:b1=1,=-,其中Sn为数列{bn}的前n项和.求数列{bn}的通项公式.【解析】(1)证明:设等比数列{an}的公比为q,所以a1≠0,q≠0.由得解得因此数列{an}为“M-数列”.(2)因为=-,所以bn≠0. 由b1=1,S1=b1,得=-,则b2=2.由=-,得Sn=,当n≥2时,由bn=Sn-Sn-1,得bn=-,整理得bn+1+bn-1=2bn.所以数列{bn}是首项和公差均为1的等差数列.因此,数列{bn}的通项公式为bn=n(n∈N*).21.从“①Sn=n;②S2=a3,a4=a1a2;③a1=2,a4是a2,a8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{an}的前n项和为Sn,公差d≠0,________,n∈N*.(1)求数列{an}的通项公式;(2)若bn=,数列{bn}的前n项和为Wn,求Wn.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)选①:Sn=n=n2+n,令n=1,得a1=1+,即a1=2,所以Sn=n2+n.当n≥2时,Sn-1=(n-1)2+n-1,当n≥2时,an=Sn-Sn-1=2n,又a1=2,满足上式,所以an=2n.选②:由S2=a3,得a1+a2=a3,得a1=d,又由a4=a1a2,得a1+3d=a1(a1+d),因为d≠0,则a1=d=2,所以an=2n.选③:由a4是a2,a8的等比中项,得a=a2a8,则(a1+3d)2=(a1+d)(a1+7d),因为a1=2,d≠0,所以d=2,则an=2n.(2)Sn=n2+n,bn=(2n+1)2+2n+1-(2n)2-2n =3·22n+2n,所以Wn=3×22+2+3×24+22+…+3×22n+2n=+=4(4n-1)+2(2n-1)=4n+1+2n+1-6.22.已知正项数列{an}的前n项和为Sn,且a=2Sn+n+1,a2=2.(1)求数列{an}的通项公式an;(2)若bn=an·2n,数列{bn}的前n项和为Tn,求使Tn>2022的最小的正整数n的值.【解析】(1)当n≥2时,由a=2Sn+n+1,a2=2,得a=2Sn-1+n-1+1,两式相减得a-a=2an+1,即a=a+2an+1=(an+1)2.∵{an}是正项数列,∴an+1=an+1.当n=1时,a=2a1+2=4,∴a1=1,∴a2-a1=1,∴数列{an}是以a1=1为首项,1为公差的等差数列,∴an=n.(2)由(1)知bn=an·2n=n·2n,∴Tn=1×21+2×22+3×23+…+n·2n,2Tn=1×22+2×23+…+(n-1)·2n+n·2n+1,两式相减得-Tn=-n·2n+1=(1-n)2n+1-2,∴Tn=(n-1)2n+1+2.∴Tn-Tn-1=n·2n>0,∴Tn单调递增.当n=7时,T7=6×28+2=1538<2022,当n=8时,T8=7×29+2=3586>2022,∴使Tn>2022的最小的正整数n的值为8.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-10-06 05:20:02 页数:19
价格:¥3 大小:486.31 KB
文章作者:随遇而安

推荐特供

MORE