首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
专题34 利用二项分布概率公式求二项分布的分布列(原卷版)
专题34 利用二项分布概率公式求二项分布的分布列(原卷版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/13
2
/13
剩余11页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题34利用二项分布概率公式求二项分布的分布列一、多选题1.下列结论正确的有()A.公共汽年上有10位乘客,沿途5个车站,乘客下车的可能方式有种B.两位男生和两位女生随机排成一列,则两位女生不相邻的概率是C.若随机変量X服从二项分布,则D.已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11,若这组数据的平均数、中位数,众数依次成等差数列,则丢失数据的所有可能值的和为122.某计算机程序每运行一次都随机出现一个五位二进制数(例如10100)其中A的各位数中出现0的概率为,出现1的概率为,记,则当程序运行一次时()A.X服从二项分布B.C.X的期望D.X的方差3.一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.则其中正确命题的序号是()A.①B.②C.③D.④二、单选题4.袋子中装有若干个均匀的红球和白球,从中摸出一个红球的概率是,依次从中有放回地摸球,每次摸出一个,累计2次摸到红球即停止.记3次之内(含3次)摸到红球的次数为,则随机变量的数学期望()A.B.C.D.13 5.设随机变量,,若,则()A.B.C.D.6.2019年1月28日至2月3日(腊月廿三至腊月廿九)我国迎来春运节前客流高峰,据统计,某区火车站在此期间每日接送旅客人数X(单位:万)近似服从正态分布,则估计在此期间,至少有5天该车站日接送旅客超过10万人次的概率为()A.B.C.D.7.经抽样调查知,高二年级有的学生数学成绩优秀.如果从全年级随机地选出50名学生,记其中数学成绩优秀的学生数为随机变量,则其期望的值为()A.B.C.25D.8.抽奖一次中奖的概率是90%,5个人各抽奖一次恰有3人中奖的概率为()A.0.93B.C.1﹣(1﹣0.9)3D.9.某次抽奖活动中,参与者每次抽中奖的概率均为,现甲参加3次抽奖,则甲恰好有一次中奖的概率为()A.B.C.D.三、解答题10.某单位在2020年8月8日“全民健身日”举行了一场趣味运动会,其中一个项目为投篮游戏.游戏的规则如下:每个参与者投篮3次,若投中的次数多于未投中的次数,得3分,否则得1分.已知甲投篮的命中率为,且每次投篮的结果相互独立.(1)求甲在一次游戏中投篮命中次数的分布列与期望;(2)若参与者连续玩次投篮游戏获得的分数的平均值不小于2,即可获得一份大奖.现有和两种选择,要想获奖概率最大,甲应该如何选择?请说明理由.11.受新冠肺炎疫情影响,上学期网课时间长达三个多月,电脑与手机屏幕代替了黑板,对同学们的视力造成了非常大的损害.我市某中学为了了解同学们现阶段的视力情况,现对高三年级2000名学生的视力情况进行了调查,从中随机抽取了100名学生的体检表,绘制了频率分布直方图如图所示:13 前50名后50名近视4032不近视1018(1)求的值,并估计这2000名学生视力的平均值(精确到0.1);(2)为了进一步了解视力与学生成绩是否有关,对本年级名次在前50名与后50名的学生进行了调查,得到的数据如列联表,根据表中数据,能否有95%把握认为视力与学习成绩有关?(3)自从“十八大”以来,国家郑重提出了人才强军战略,充分体现了国家对军事人才培养的高度重视.近年来我市空军飞行员录取情况喜人,继2019年我市有6人被空军航空大学录取之后,今年又有3位同学顺利拿到了空军航空大学通知书,彰显了我市爱国主义教育,落实立德树人根本任务已初见成效.2020年某空军航空大学对考生视力的要求是不低于5.0,若以该样本数据来估计全市高三学生的视力,现从全市视力在4.8以上的同学中随机抽取3名同学,这3名同学中有资格报考该空军航空大学的人数为,求的分布列及数学期望.附:,其中.0.100.050.0250.0100.0052.7063.8415.0246.6357.87912.为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在A市与B市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为2m13 ,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:A市居民B市居民喜欢杨树300200喜欢木棉树250250是否有99.9%的把握认为喜欢树木的种类与居民所在的城市具有相关性;(2)若从所有的路口中随机抽取4个路口,恰有X个路口种植杨树,求X的分布列以及数学期望;附:P(K2≥k)0.1000.0500.0100.001k2.7063.8416.63510.82813.在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加.中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”,统计如图如示.男性女性合计手机支付族101222非手机支付族30838合计402060(1)根据上述样本数据,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望.(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减10013 元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附:0.0500.0100.0013.8416.63510.82814.某几位大学生自主创办了一个服务公司提供两种民生消费产品(人们购买时每次只买其中一种)服务,他们经过统计分析发现:第一次购买产品的人购买的概率为,购买的概率为.第一次购买产品的人第二次购买产品的概率为,购买产品的概率为.第一次购买产品的人第二次购买产品的概率为,购买产品的概率也是.(1)求某人第二次来,购买的是产品的概率;(2)记第二次来公司购买产品的个人中有个人购买产品,求的分布列并求15.某中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,才能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,课程初等代数初等几何初等数论微积分初步合格的概率(1)求甲同学取得参加数学竞赛复赛的资格的概率;(2)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列(只需列式无需计算)及期望.16.江苏实行的“新高考方案:”模式,其中统考科目:“”指语文、数学、外语三门,不分文理:学生根据高校的要求,结合自身特长兴趣,“”指首先在在物理、历史门科目中选择一门;“”13 指再从思想政治、地理、化学、生物门科目中选择门某校,根据统计选物理的学生占整个学生的;并且在选物理的条件下,选择地理的概率为;在选历史的条件下,选地理的概率为.(1)求该校最终选地理的学生概率;(2)该校甲、乙、丙三人选地理的人数设为随机变量.①求随机变量的概率;②求的概率分布列以及数学期望.17.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于分的选手定为合格选手,直接参加第二轮比赛,大于等于分的选手将直接参加竞赛选拔赛.已知成绩合格的名参赛选手成绩的频率分布直方图如图所示,其中的频率构成等比数列.(1)求的值;(2)估计这名参赛选手的平均成绩;(3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为,假设每名选手能否通过竞赛选拔赛相互独立,现有名选手进入竞赛选拔赛,记这名选手在竞赛选拔赛中通过的人数为随机变量,求的分布列和数学期望.18.挑选空军飞行员可以说是“万里挑一”,要想通过需要五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过复检的概率;(2)设只要通过后三关就可以被录取,求录取人数的分布列.19.为加快推进我区城乡绿化步伐,植树节之际,决定组织开展职工义务植树活动,某单位一办公室现安排4个人去参加植树活动,该活动有甲、乙两个地点可供选择.13 约定:每个人通过掷一枚质地均匀的骰子决定自己去哪个地点植树,掷出点数为1或2的人去甲地,掷出点数大于2的人去乙地.(1)求这4个人中恰有2人去甲地的概率;(2)求这4个人中去甲地的人数大于去乙地的人数的概率;(3)用分别表示这4个人中去甲、乙两地的人数,记,求随机变量的分布列与数学期望.20.某工厂为了提高生产效率,对生产设备进行了技术改造,为了对比技术改造后的效果,采集了技术改造前后各20次连续正常运行的时间长度(单位:天)数据,整理如下:改造前:19,31,22,26,34,15,22,25,40,35,18,16,28,23,34,15,26,20,24,21改造后:32,29,41,18,26,33,42,34,37,39,33,22,42,35,43,27,41,37,38,36(1)完成下面的列联表,并判断能否有99%的把握认为技术改造前后的连续正常运行时间有差异?超过30不超过30改造前改造后(2)工厂的生产设备的运行需要进行维护,工厂对生产设备的生产维护费用包括正常维护费,保障维护费两种.对生产设备设定维护周期为T天(即从开工运行到第kT天,k∈N*)进行维护.生产设备在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产设备能连续运行,则只产生一次正常维护费,而不会产生保障维护费;若生产设备不能连续运行,则除产生一次正常维护费外,还产生保障维护费.经测算,正常维护费为0.5万元/次;保障维护费第一次为0.2万元/周期,此后每增加一次则保障维护费增加0.2万元.现制定生产设备一个生产周期(以120天计)内的维护方案:T=30,k=1,2,3,4.以生产设备在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及均值.附:P(K2≥k)0.0500.0100.00113 k3.8416.63510.82821.某工厂生产了一批高精尖的仪器,为确保仪器的可靠性,工厂安排了一批专家检测仪器的可靠性,毎台仪器被毎位专家评议为“可靠”的概率均为,且每台仪器是否可靠相互独立.(1)当,现抽取4台仪器,安排一位专家进行检测,记检测结果可靠的仪器台数为,求的分布列和数学期望;(2)为进一步提高出厂仪器的可靠性,工厂决定每台仪器都由三位专家进行检测,只有三位专家都检验仪器可靠,则仪器通过检测.若三位专家检测结果都为不可靠,则仪器报废.其余情况,仪器需要回厂返修.拟定每台仪器检测费用为100元,若回厂返修,每台仪器还需要额外花费300元的维修费.现以此方案实施,且抽检仪器为100台,工厂预算3.3万元用于检测和维修,问费用是否有可能会超过预算?并说明理由.22.袋中有大小完全相同的7个白球,3个黑球,甲、乙两人分别从中随机地连续抽取3次,每次抽取1个球.(1)若甲是无放回地抽取,求甲至多抽到一个黑球的概率;(2)若乙是有放回地抽取,且规定抽到白球得10分,抽到黑球得20分,求乙总得分的分布列和数学期望.23.成都市现在已是拥有1400多万人口的城市,机动车保有量已达450多万辆,成年人中约拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后对这200人进行问卷调查.这200人所得的分数都分布在范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图所示.13 拥有驾驶证没有驾驶证总计具有很强安全意识不具有很强安全意识58总计200(1)补全上面的列联表,并判断能否有超过的把握认为“具有很强安全意识”与拥有驾驶证有关?(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取4人,记“具有很强安全意识”的人数为X,求X的分布列及数学期望.附表及公式:,其中.P()0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82824.近年来我国电子商务行业迎来蓬勃发展的新机遇,2019年元旦期间,石嘴山市某物平台的销售业绩高达1271万人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(1)完成下面的列联表,并回答是否有99%的把握认为商品好评与服务好评有关?对服务好评对服务不满意合计对商品好评对商品不满意合计200(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量,求对商品和服务全好评的次数的分布列,数学期望和方差.附:13 0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)25.根据教育部《中小学生艺术素质测评办法》,为提高学生审美素养,提升学生的综合素质,江苏省中考将增加艺术素质测评的评价制度,将初中学生的艺术素养列入学业水平测试范围.为初步了解学生家长对艺术素质测评的了解程度,某校随机抽取名学生家长参与问卷测试,并将问卷得分绘制频数分布表如下:得分男性人数女性人数(1)将学生家长对艺术素质评价的了解程度分为“比较了解”(得分不低于分)和“不太了解”(得分低于分)两类,完成列联表,并判断是否有的把握认为“学生家长对艺术素质评价的了解程度”与“性别”有关?(2)以这名学生家长中“比较了解”的频率代替该校学生家长“比较了解”的概率.现在再随机抽取名学生家长,设这名家长中“比较了解”的人数为,求的概率分布列和数学期望.不太了解比较了解合计男性女性合计13 附:,.临界值表:26.设甲、乙两位同学上学期间,每天7:10之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用表示甲同学上学期间的每周五天中7:10之前到校的天数,求随机变量的分布列和数学期望;(2)记“上学期间的某周的五天中,甲同学在7:10之前到校的天数比乙同学在7:10之前到校的天数恰好多3天”为事件,求事件发生的概率.27.甲、乙两名同学进行乒乓球比赛,规定每一局比赛获胜方记1分,失败方记0分,谁先获得5分就获胜,比赛结束,假设每局比赛甲获胜的概率都是.(1)求比赛结束时恰好打了7局的概率;(2)若现在的比分是3比1甲领先,记表示结束比赛还需打的局数,求的分布列及期望.28.2019年10月17日是全国第五个“扶贫日”,在“扶贫日”到来之际,某地开展“精准扶贫,携手同行”的主题活动,调查基层干部走访贫困户数量.A镇有基层干部50人,B镇有基层干部80人,C镇有基层干部70人,每人都走访了不少贫困户;按照分层抽样,从A,B,C三镇共选40名基层干部,统计他们走访贫困户的数量,并将完成走访数量分成5组:,,,,,绘制成如下频率分布直方图.13 (1)求这40人中有多少人来自B镇,并估算这40人平均走访多少贫困户?(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,从三镇的所有基层干部中随机选取4人,记这4人中工作出色的人数为X,求X的数学期望.29.某城市为疏导城市内的交通拥堵问题,现对城市中某条快速路进行限速,经智能交通管理服务系统观测计算,通过该快速路的所有车辆行驶速度近似服从正态分布,其中平均车速,标准差.通过分析,车速保持在之间,可令道路保持良好的行驶状况,故认为车速在之外的车辆需矫正速度(速度单位:).(1)从该快速路上观测到的车辆中任取一辆,估计该车辆需矫正速度的概率.(2)某兴趣小组也对该快速路进行了观测,他们于某个时间段内随机对100辆车的速度进行取样,根据测量的数据列出上面的条形图.①估计这100辆车的速度的中位数(同一区间中数据视为均匀分布);②若以该兴趣小组测得数据中的频率视为概率,从该快速路上的所有车辆中任取三辆,记其中不需要矫正速度的车辆数为速度X,求X的分布列和期望.附:若,则;;.30.云南是世界茶树的原产地之一,也是中国四大茶产区之一,独特的立体气候为茶叶的种质资源多样性创造了良好的自然条件,茶叶产业是云南高原特色农业的闪亮名片.某大型茶叶种植基地为了比较、两品种茶叶的产量,某季采摘时,随机选取种植、两品种茶叶的茶园各30亩,得到亩产量(单位:亩)的茎叶图如下(整数位为茎,小数位为叶,如55.4的茎为55,叶为4):13 亩产不低于的茶园称为“高产茶园”,其它称为“非高产茶园”.(1)请根据已知条件完成以下列联表,并判断是否有95%的把握认为“高产茶园”与茶叶品种有关?A品种茶叶(亩数)B品种茶叶(亩数)合计高产茶园非高产茶园合计(2)用样本估计总体,将频率视为概率,现从该种植基地品种的所有茶园中随机抽取4亩,且每次抽取的结果相互独立,设被抽取的4亩茶园中“高产茶园”的亩数为,求的分布列和数学期望.附:,0.0500.0100.0013.8416.63510.82813
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022新高考数学人教A版一轮总复习训练11.3条件概率、二项分布及正态分布专题检测(带解析)
2022届高考数学二轮专题复习8二项分布超几何分布和正态分布
2022年高考数学一轮复习第12章概率4二项分布与正态分布课件(人教A版)
第十章 §10.7 二项分布、超几何分布与正态分布
第十章 §10.7 二项分布、超几何分布与正态分布
专题17 利用导数求函数的极值(原卷版)
专题18 利用函数的极值求参数值(原卷版)
专题19 利用导数求函数的最值(原卷版)
专题33 利用条件概率公式求解条件概率(原卷版)
专题34 利用二项分布概率公式求二项分布的分布列(教师版)
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2023-09-28 02:36:02
页数:13
价格:¥3
大小:427.26 KB
文章作者:教学资源
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划