第19章矩形、菱形、正方形单元检测题时间:120分钟 满分:120分 一、选择题(每小题3分,共30分)1.下列命题中正确的是( B )A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形2.如图,在矩形ABCD中,AC与BD相交于点O,若∠DBC=30°,则∠AOB等于( D )A.120°B.15°C.30°D.60°3.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连结AE,CF,则四边形AECF是( C )A.梯形B.矩形C.菱形D.正方形,第2题图),第3题图),第5题图),第6题图)4.一个菱形的周长为8cm,高为1cm,则这个菱形的两邻角的度数之比为( D )A.2∶1B.3∶1C.4∶1D.5∶15.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断中不正确的是( D )A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是菱形D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形6.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( D )A.AF=AEB.△ABE≌△AGFC.EF=2D.AF=EF7.如图,一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21cm2,则该矩形的面积为( A )A.60cm2B.70cm2C.120cm2D.140cm28.如图,正方形ABCD的边长为1,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,6
垂足为F,则EF的长为( C )A.1B.C.1-D.-4,第7题图),第8题图),第9题图),第10题图)9.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,),反比例函数y=的图象与菱形对角线AO交于D点,连结BD,当DB⊥x轴时,k的值是( D )A.1B.-1C.D.-10.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG,CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是( C )A.2B.3C.4D.5二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,E为BC的中点,且∠AED=90°,AD=10,则AB的长为__5__.,第11题图) ,第13题图) ,第14题图) ,第15题图)12.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是__20__.13.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E,F不重合,已知△ACD的面积为3,则图中阴影部分两个三角形的面积和为__3__.14.如图,▱ABCD的两条对角线AC,BD相交于点O,AB=,AC=4,BD=2,小明说:“这个四边形是菱形.”他说这话的根据是__对角线互相垂直的平行四边形是菱形__.6
15.▱ABCD中,给出下列四个条件:①AC⊥BD;②∠ADC=90°;③BC=CD;④AC=BD.其中选两个条件能使▱ABCD是正方形的有__①②、①④、②③、③④__.(填上所有正确结果的序号)16.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为____.,第16题图) ,第17题图),第18题图)17.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=____cm.18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点Bn的坐标为__(2n-1,2n-1)__.三、解答题(共66分)19.(8分)如图,在矩形ABCD中,两条对角线AC,BD相交于点O,E是AC上的一点,且BO=2AE,∠AOD=120°,求证:BE⊥AC.解:∵四边形ABCD是矩形,∴OB=OA,又∵OB=2AE,∴AE=OE,又∵∠AOD=120°,∴∠AOB=60°,∴△ABO是等边三角形.又∵AE=OE,∴BE⊥AO,即BE⊥AC20.(8分)如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=2,求线段AE的长.6
解:(1)用SAS证△ABE≌△CDF (2)∵∠B=60°,∴△ABC是等边三角形,∴BE=CE=1,AE⊥BC,∴AE===21.(10分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连结DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连结AE,试判断AE与DF的位置关系,并说明理由.解:(1)△ADC≌△ABC,△ADF≌△ABF,△CDF≌△CBF (2)AE⊥DF.理由如下:设AE与DF相交于点H,易证△ADF≌△ABF,∴∠ADF=∠ABF,再证△ADE≌△BCE,∴∠DAE=∠CBE,∵∠ABF+∠CBE=90°,∴∠ADF+∠DAE=90°,∴∠DHA=90°,∴AE⊥DF22.(9分)如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD于点G.求证:四边形ACGF是菱形.解:易证四边形ACGF是平行四边形,再证AC=AF,故四边形ACGF是菱形6
23.(9分)如图,△ABC中,AB=AC,D是BC的中点,DE∥AB交AC于点E,DF∥AC交AB于点F.(1)求证:四边形AFDE是菱形;(2)当∠ABC等于多少度时,四边形AFDE是正方形?请说明理由.解:(1)易证四边形AFDE是平行四边形,∵D为BC中点,DE∥AB,DF∥AC,∴DE=AB,DF=AC,∵AB=AC,∴DE=DF,∴四边形AFDE是菱形 (2)当∠ABC=45°时,四边形AFDE是正方形,理由略24.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连结DO并延长到点E,使OE=OD,连结AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.解:(1)∵OA=OB,OE=OD,∴四边形AEBD为平行四边形,∵AB=AC,AD平分∠BAC,∴AD⊥BC,即∠ADB=90°,∴四边形AEBD为矩形 (2)当∠BAC=90°时,四边形AEBD为正方形,理由如下:∵∠BAC=90°,AD平分∠BAC,AD⊥BC,∴∠DAB=∠DBA=45°,∴BD=AD,∴矩形AEBD为正方形6
25.(12分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连结CF.(1)如图①,当点D在线段BC上时,求证:CF+CD=BC;(2)如图②,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图③,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变:①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连结OC,求OC的长度.解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,可证△BAD≌△CAF(SSS),∴BD=CF,∵BC=BD+CD,∴CF+CD=BC (2)BC=CF-CD (3)①CD-CF=BC ②由题知,∠BAC=90°,∠ABC=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,又∵AB=AC,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD为直角三角形,∵DE=2,∴DF=DE=2,∴OC=DF=6