首页

第二十二章二次函数22.2二次函数与一元二次方程第1课时(人教版九上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

22.2二次函数与一元二次方程第1课时教学目标:1.通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。2.使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。3.进一步培养学生综合解题能力,渗透数形结合思想。重点难点:重点:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点。难点:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.教学过程:一、引言在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,请同学们共同研究,尝试解决以下几个问题。二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。连喷头在内,柱高为0.8m。水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+。(1)喷出的水流距水平面的最大高度是多少?(最大值)(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?(就是求如图(2)B点的横坐标)问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离为2.4m。这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?教学要点1.教师分析:根据已知条件,要求ED的宽,只要求出FD的长度。在如图(3)的直角坐标系中,即只要求出D点的横坐标。因为点D在涵洞所成的抛物线上,又由已知条件可得到点D的纵坐标,所以利用抛物线的函数关系式可以进一步算出点D的横坐标。解:以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,涵洞的横截面所成抛物线的顶点在原点,对称轴为y轴,开口向下,所以可设它的函数关系式为:y=ax2(a<0)(1)因为AB与y轴相交于C点,所以CB==0.8(m),又OC=2.4m,所以点B的坐标是(0.8,-4- -2.4)。因为点B在抛物线上,将它的坐标代人(1),得-2.4=a×0.82所以:a=-因此,函数关系式是y=-x2(2)因为OF=1.5m,设FD=x1m(x1>0),则点D坐标为(x1,-1.5)。因为点D的坐标在抛物线上,将它的坐标代人(2),得-1.5=-x12x12=x1=±x1=-不符合假设,舍去,所以x1=。ED=2FD=2×x1=2×=≈×3.162≈1.26(m)所以涵洞ED是m,会超过1m。问题3:画出函数y=x2-x-3/4的图象,根据图象回答下列问题。(1)图象与x轴交点的坐标是什么;(2)当x取何值时,y=0?这里x的取值与方程x2-x-=0有什么关系?(3)你能从中得到什么启发?教学要点1.先让学生回顾函数y=ax2+bx+c图象的画法,按列表、描点、连线等步骤画出函数y=x2-x-的图象。2.教师引导学生观察函数图象,回答(1)提出的问题,得到图象与x轴交点的坐标分别是(-,0)和(,0)。6.对于问题(3),教师组织学生分组讨论、交流,达成共识:从“形”的方面看,函数y=x2-x-的图象与x轴交点的横坐标,即为方程x2-x-=0的解;从“数”的方面看,当二次函数y=x2-x-的函数值为0时,相应的自变量的值即为方程x2-x-=0的解。更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。三、试一试根据问题3的图象回答下列问题。(1)当x取何值时,y<0?当x取何值时,y>0?(当-<x<时,y<0;当x<-或x>时,y>0)(2)能否用含有x的不等式来描述(1)中的问题?(能用含有x的不等式采描述(1)中-4- 的问题,即x2-x-<0的解集是什么?x2-x->0的解集是什么?)想一想:二次函数与一元二次不等式有什么关系?让学生类比二次函数与一元二次不等式方程的关系,讨论、交流,达成共识:(1)从“形”的方面看,二次函数y=ax2+bJ+c在x轴上方的图象上的点的横坐标,即为一元二次不等式ax2+bx+c>0的解;在x轴下方的图象上的点的横坐标.即为一元二次不等式ax2+bx+c<0的解。(2)从“数”的方面看,当二次函数y=ax2+bx+c的函数值大于0时,相应的自变量的值即为一元二次不等式ax2+bx+c>0的解;当二次函数y=ax2+bx+c的函数值小于0时,相应的自变量的值即为一元二次不等式ax2+bc+c<0的解。这一结论反映了二次函数与一元二次不等式的关系。四、课堂练习:练习1、2。五、小结:1.通过本节课的学习,你有什么收获?有什么困惑?2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况。六、作业:1.二次函数y=x2-3x-18的图象与x轴有两交点,求两交点间的距离。2.已知函数y=x2-x-2。(1)先确定其图象的开口方向、对称轴和顶点坐标,再画出图象(2)观察图象确定:x取什么值时,①y=0,②y>0;③y<0。3.学校建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA。O恰好在水面中心,布置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA任意平面上的抛物线如图(5)所示,建立直角坐标系(如图(6)),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+x+,请回答下列问题:(1)花形柱子OA的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?4.如图(7),一位篮球运动员跳起投篮,球沿抛物线y=-x2+3.5运行,然后准确落人篮框内。已知篮框的中心离地面的距离为3.05米。(1)球在空中运行的最大高度为多少米?-4- (2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?教后反思:-4-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-11 10:09:02 页数:4
价格:¥1 大小:42.90 KB
文章作者:随遇而安

推荐特供

MORE