首页

第二十二章二次函数22.2二次函数与一元二次方程课件(新人教版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/41

2/41

3/41

4/41

剩余37页未读,查看更多内容需下载

第二十二章二次函数22.2二次函数与一元二次方程\n学习目标1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点)2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点)3.了解用图象法求一元二次方程的近似根.\n导入新课情境引入问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问题:\n讲授新课(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?Oht1513∴当球飞行1s或3s时,它的高度为15m.解:解方程15=20t-5t2,t2-4t+3=0,t1=1,t2=3.你能结合上图,指出为什么在两个时间求的高度为15m吗?h=20t-5t2二次函数与一元二次方程的关系\n(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?你能结合图形指出为什么只在一个时间球的高度为20m?Oht204解方程:20=20t-5t2,t2-4t+4=0,t1=t2=2.当球飞行2秒时,它的高度为20米.h=20t-5t2\n(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.h=20t-5t2\n(4)球从飞出到落地要用多少时间?Oht0=20t-5t2,t2-4t=0,t1=0,t2=4.当球飞行0秒和4秒时,它的高度为0米.即0秒时球地面飞出,4秒时球落回地面.h=20t-5t2\n从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?一般地,当y取定值且a≠0时,二次函数为一元二次方程.如:y=5时,则5=ax2+bx+c就是一个一元二次方程.为一个常数(定值)\n所以二次函数与一元二次方程关系密切.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.\n思考观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.利用二次函数深入讨论一元二次方程\n1xyOy=x2-6x+9y=x2-x+1y=x2+x-2观察图象,完成下表:抛物线与x轴公共点个数公共点横坐标相应的一元二次方程的根y=x2-x+1y=x2-6x+9y=x2+x-20个1个2个x2-x+1=0无解0x2-6x+9=0,x1=x2=3-2,1x2+x-2=0,x1=-2,x2=1\n知识要点二次函数y=ax2+bx+c的图象与x轴交点一元二次方程ax2+bx+c=0的根b2-4ac有两个交点有两个不相等的实数根b2-4ac>0有两个重合的交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<0二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系\n例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.(1)证明:∵m≠0,∴Δ=(m+2)2-4m×2=m2+4m+4-8m=(m-2)2.∵(m-2)2≥0,∴Δ≥0,∴此抛物线与x轴总有两个交点;\n(2)解:令y=0,则(x-1)(mx-2)=0,所以x-1=0或mx-2=0,解得x1=1,x2=.当m为正整数1或2时,x2为整数,即抛物线与x轴总有两个交点,且它们的横坐标都是整数.所以正整数m的值为1或2.例1:已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).(1)求证:此抛物线与x轴总有两个交点;(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值.\n变式:已知:抛物线y=x2+ax+a-2.(1)求证:不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)设这个二次函数的图象与x轴相交于A(x1,0),B(x2,0),且x1、x2的平方和为3,求a的值.(1)证明:∵Δ=a2-4(a-2)=(a-2)2+4>0,∴不论a取何值时,抛物线y=x2+ax+a-2与x轴都有两个不同的交点;(2)解:∵x1+x2=-a,x1·x2=a-2,∴x1(2)+x2(2)=(x1+x2)2-2x1·x2=a2-2a+4=3,∴a=1.\n例2如图,丁丁在扔铅球时,铅球沿抛物线运行,其中x是铅球离初始位置的水平距离,y是铅球离地面的高度.(1)当铅球离地面的高度为2.1m时,它离初始位置的水平距离是多少?(2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少?(3)铅球离地面的高度能否达到3m?为什么?\n解(1)由抛物线的表达式得即解得即当铅球离地面的高度为2.1m时,它离初始位置的水平距离是1m或5m.(1)当铅球离地面的高度为2.1m时,它离初始位置的水平距离是多少?\n(2)铅球离地面的高度能否达到2.5m,它离初始位置的水平距离是多少?(2)由抛物线的表达式得即解得即当铅球离地面的高度为2.5m时,它离初始位置的水平距离是3m.\n(3)由抛物线的表达式得即因为所以方程无实根.所以铅球离地面的高度不能达到3m.(3)铅球离地面的高度能否达到3m?为什么?\n一元二次方程与二次函数紧密地联系起来了.\n例3:求一元二次方程的根的近似值(精确到0.1).分析:一元二次方程x²-2x-1=0的根就是抛物线y=x²-2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.利用二次函数求一元二次方程的近似解\n解:画出函数y=x²-2x-1的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.\n先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:x…-0.4-0.5…y…-0.040.25…观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4.\n一元二次方程的图象解法利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数y=2x2+x-15的图象;(2)观察估计二次函数y=2x2+x-15的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.方法归纳\n例4:已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的近似根为()A.x1≈-2.1,x2≈0.1B.x1≈-2.5,x2≈0.5C.x1≈-2.9,x2≈0.9D.x1≈-3,x2≈1解析:由图象可得二次函数y=ax2+bx+c图象的对称轴为x=-1,而对称轴右侧图象与x轴交点到原点的距离约为0.5,∴x2≈0.5;又∵对称轴为x=-1,则=-1,∴x1=2×(-1)-0.5=-2.5.故x1≈-2.5,x2≈0.5.故选B.B\n解答本题首先需要根据图象估计出一个根,再根据对称性计算出另一个根,估计值的精确程度,直接关系到计算的准确性,故估计尽量要准确.方法总结\n问题1函数y=ax2+bx+c的图象如图,那么方程ax2+bx+c=0的根是__________;不等式ax2+bx+c>0的解集是___________;不等式ax2+bx+c<0的解集是_________.3-1Oxyx1=-1,x2=3x<-1或x>3-1<x<3合作探究二次函数与一元二次不等式的关系(拓展)\n拓广探索:函数y=ax2+bx+c的图象如图,那么方程ax2+bx+c=2的根是______________;不等式ax2+bx+c>2的解集是___________;不等式ax2+bx+c<2的解集是_________.3-1Ox2(4,2)(-2,2)x1=-2,x2=4x<-2或x>4-2<x<4y\n问题2:如果不等式ax2+bx+c>0(a≠0)的解集是x≠2的一切实数,那么函数y=ax2+bx+c的图象与x轴有____个交点,坐标是______.方程ax2+bx+c=0的根是______.1(2,0)x=22Ox\n问题3:如果方程ax2+bx+c=0(a≠0)没有实数根,那么函数y=ax2+bx+c的图象与x轴有______个交点;不等式ax2+bx+c<0的解集是多少?0解:(1)当a>0时,ax2+bx+c<0无解;(2)当a<0时,ax2+bx+c<0的解集是一切实数.3-1Ox\n试一试:利用函数图象解下列方程和不等式:(1)①-x2+x+2=0;②-x2+x+2>0;③-x2+x+2<0.(2)①x2-4x+4=0;②x2-4x+4>0;③x2-4x+4<0.(3)①-x2+x-2=0;②-x2+x-2>0;③-x2+x-2<0.xy020xy-12xy0y=-x2+x+2x1=-1,x2=21<x<2x1<-1,x2>2x2-4x+4=0x=2x≠2的一切实数x无解-x2+x-2=0x无解x无解x为全体实数\n知识要点二次函数y=ax2+bx+c的图象与x轴交点a>0a<0有两个交点x1,x2(x1<x2)有一个交点x0没有交点二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次不等式的关系y<0,x1<x<x2.y>0,x2<x或x<x2.y>0,x1<x<x2.y<0,x2<x或x<x2.y>0.x0之外的所有实数;y<0,无解y<0.x0之外的所有实数;y>0,无解.y>0,所有实数;y<0,无解y<0,所有实数;y>0,无解\n判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09C1.根据下列表格的对应值:当堂练习\n2.若二次函数y=-x2+2x+k的部分图象如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2=;-1yOx133.一元二次方程3x2+x-10=0的两个根是x1=-2,x2=,那么二次函数y=3x2+x-10与x轴的交点坐标是.(-2,0)(,0)\n4.若一元二次方程无实根,则抛物线图象位于()A.x轴上方B.第一、二、三象限C.x轴下方D.第二、三、四象限A5.二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0D\n6.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0.∴k≤4且k≠3.综上所述,k的取值范围是k≤4.\n7.某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时距地面米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?\n解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A(0,),B(4,4),C(7,3),其中B是抛物线的顶点.设二次函数关系式为y=a(x-h)2+k,将点A、B的坐标代入,可得y=-(x-4)2+4.将点C的坐标代入上式,得左边=3,右边=-(7-4)2+4=3,左边=右边,即点C在抛物线上.所以此球一定能投中;\n(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?(2)将x=1代入函数关系式,得y=3.因为3.1>3,所以盖帽能获得成功.\n8.已知二次函数的图象,利用图象回答问题:(1)方程的解是什么?(2)x取什么值时,y>0?(3)x取什么值时,y<0?xyO248解:(1)x1=2,x2=4;(2)x<2或x>4;(3)2<x<4.\n判别式△=b2-4ac二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a≠0)的根不等式ax2+bx+c>0(a>0)的解集不等式ax2+bx+c<0(a>0)的解集x2x1xyOOx1=x2xyxOy△>0△=0△<0x1;x2x1=x2=-b/2a没有实数根x<x1或x>x2x≠x1的一切实数所有实数x1<x<x2无解无解课堂小结

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-08-17 09:00:12 页数:41
价格:¥3 大小:1.73 MB
文章作者:随遇而安

推荐特供

MORE