首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
初中
>
数学
>
2023中考数学真题分项汇报20图形的旋转(共30题)(解析版)
2023中考数学真题分项汇报20图形的旋转(共30题)(解析版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/64
2
/64
剩余62页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题20图形的旋转(30题)一、单选题1.(2023·江苏无锡·统考中考真题)如图,中,,将逆时针旋转得到,交于F.当时,点D恰好落在上,此时等于( ) A.B.C.D.【答案】B【分析】根据旋转可得,再结合旋转角即可求解.【详解】解:由旋转性质可得:,,∵,∴,,∴,故选:B.【点睛】本题考查了几何—旋转问题,掌握旋转的性质是关键.2.(2023·天津·统考中考真题)如图,把以点A为中心逆时针旋转得到,点B,C的对应点分别是点D,E,且点E在的延长线上,连接,则下列结论一定正确的是( ) A.B.C.D.【答案】A【分析】根据旋转的性质即可解答.学科网(北京)股份有限公司 【详解】根据题意,由旋转的性质,可得,,,故B选项和D选项不符合题意,,故C选项不符合题意,,故A选项符合题意,故选:A.【点睛】本题考查了旋转的性质,熟练掌握旋转的性质和三角形外角运用是解题的关键.3.(2023·四川宜宾·统考中考真题)如图,和是以点为直角顶点的等腰直角三角形,把以为中心顺时针旋转,点为射线、的交点.若,.以下结论:①;②;③当点在的延长线上时,;④在旋转过程中,当线段最短时,的面积为.其中正确结论有( ) A.1个B.2个C.3个D.4个【答案】D【分析】证明即可判断①,根据三角形的外角的性质得出②,证明得出,即可判断③;以为圆心,为半径画圆,当在的下方与相切时,的值最小,可得四边形是正方形,在中学科网(北京)股份有限公司 ,然后根据三角形的面积公式即可判断④.【详解】解:∵和是以点为直角顶点的等腰直角三角形,∴,∴,∴,∴,,故①正确;设,∴,∴,∴,故②正确;当点在的延长线上时,如图所示 ∵,,∴∴∵,.∴,∴∴,故③正确;④如图所示,以为圆心,为半径画圆, 学科网(北京)股份有限公司 ∵,∴当在的下方与相切时,的值最小,∴四边形是矩形,又,∴四边形是正方形,∴,∵,∴,在中,∴取得最小值时,∴故④正确,故选:D.【点睛】本题考查了旋转的性质,相似三角形的性质,勾股定理,切线的性质,垂线段最短,全等三角形的性质与判定,正方形的性质,熟练掌握以上知识是解题的关键.4.(2023·山东聊城·统考中考真题)如图,已知等腰直角,,,点C是矩形与的公共顶点,且,;点D是延长线上一点,且.连接,,在矩形绕点C按顺时针方向旋转一周的过程中,当线段达到最长和最短时,线段对应的长度分别为m和n,则的值为( ) A.2B.3C.D.【答案】D【分析】根据锐角三角函数可求得,当线段达到最长时,此时点在点的下方,且,学科网(北京)股份有限公司 ,三点共线,求得,,根据勾股定理求得,即,当线段达到最短时,此时点在点的上方,且,,三点共线,则,,根据勾股定理求得,即,即可求得.【详解】∵为等腰直角三角形,,∴,当线段达到最长时,此时点在点的下方,且,,三点共线,如图: 则,,在中,,即,当线段达到最短时,此时点在点的上方,且,,三点共线,如图: 则,,在中,,即,学科网(北京)股份有限公司 故,故选:D.【点睛】本题考查了锐角三角函数,勾股定理等,根据旋转推出线段最长和最短时的位置是解题的关键.二、填空题5.(2023·江苏连云港·统考中考真题)以正五边形的顶点C为旋转中心,按顺时针方向旋转,使得新五边形的顶点落在直线上,则正五边旋转的度数至少为______°.【答案】【分析】依据正五边形的外角性质,即可得到的度数,进而得出旋转的角度.【详解】解:∵五边形是正五边形,∴,∴新五边形的顶点落在直线上,则旋转的最小角度是,故答案为:.【点睛】本题主要考查了正多边形、旋转性质,关键是掌握正多边形的外角和公式的运用.学科网(北京)股份有限公司 6.(2023·湖南张家界·统考中考真题)如图,为的平分线,且,将四边形绕点逆时针方向旋转后,得到四边形,且,则四边形旋转的角度是______. 【答案】【分析】根据角平分线的性质可得,根据旋转的性质可得,,求得,即可求得旋转的角度.【详解】∵为的平分线,,∴,∵将四边形绕点逆时针方向旋转后,得到四边形,∴,,∴,故答案为:.【点睛】本题考查了角平分线的性质,旋转的性质,熟练掌握以上性质是解题的关键.7.(2023·湖南常德·统考中考真题)如图1,在中,,,,D是上一点,且,过点D作交于E,将绕A点顺时针旋转到图2的位置.则图2中的值为__________. 【答案】【分析】首先根据勾股定理得到,然后证明出,得到学科网(北京)股份有限公司 ,进而得到,然后证明出,利用相似三角形的性质求解即可.【详解】∵在中,,,,∴∵∴,∴∴∴∵∴∴∴∴.故答案为:.【点睛】此题考查了相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质和判定定理.8.(2023·江苏无锡·统考中考真题)已知曲线分别是函数的图像,边长为的正的顶点在轴正半轴上,顶点、在轴上(在的左侧),现将绕原点顺时针旋转,当点在曲线上时,点恰好在曲线上,则的值为__________.【答案】6【分析】画出变换后的图像即可(画即可),当点在轴上,点、在轴上时,根据为等边三角形且,可得,过点、分别作轴垂线构造相似,则,根据相似三角形的性质得出,进而根据反比例函数的几何意义,即可求解.【详解】当点在轴上,点、在轴上时,连接,为等边三角形且,则,,学科网(北京)股份有限公司 如图所示,过点分别作轴的垂线,交轴分别于点,,,,,,,,.【点睛】本题考查了反比例函数的性质,的几何意义,相似三角形的性质与判定,正确作出辅助线构造相似三角形是解题关键.9.(2023·辽宁·统考中考真题)如图,线段,点是线段上的动点,将线段绕点顺时针旋转得到线段,连接,在的上方作,使,点为的中点,连接,当最小时,的面积为___________. 【答案】【分析】连接,交于点P,由直角三角形的性质及等腰三角形的性质可得垂直平分,为定角,可得点F在射线上运动,当时,最小,由含30度角直角三角形的性质即可求解.学科网(北京)股份有限公司 【详解】解:连接,交于点P,如图,∵,点为的中点,∴,∵,∴,∴是等边三角形,∴;∵线段绕点顺时针旋转得到线段,∴,∵,∴垂直平分,,∴点F在射线上运动,∴当时,最小,此时,∴;∵,∴,∴,∵,∴由勾股定理得,∴,∴; 学科网(北京)股份有限公司 故答案为:.【点睛】本题考查了等腰三角形性质,含30度直角三角形的性质,斜边中线性质,勾股定理,线段垂直平分线的判定,勾股定理,旋转的性质,确定点F的运动路径是关键与难点.10.(2023·江西·统考中考真题)如图,在中,,将绕点逆时针旋转角()得到,连接,.当为直角三角形时,旋转角的度数为_______. 【答案】或或【分析】连接,根据已知条件可得,进而分类讨论即可求解.【详解】解:连接,取的中点,连接,如图所示, ∵在中,,∴,∴是等边三角形,∴,,∴∴,∴∴,如图所示,当点在上时,此时,则旋转角的度数为, 学科网(北京)股份有限公司 当点在的延长线上时,如图所示,则 当在的延长线上时,则旋转角的度数为,如图所示,∵,,∴四边形是平行四边形,∵∴四边形是矩形,∴即是直角三角形, 综上所述,旋转角的度数为或或故答案为:或或.【点睛】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.11.(2023·上海·统考中考真题)如图,在中,,将绕着点A旋转,旋转后的点B落在上,点B的对应点为D,连接是的角平分线,则________. 学科网(北京)股份有限公司 【答案】【分析】如图,,,根据角平分线的定义可得,根据三角形的外角性质可得,即得,然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:,,∵是的角平分线,∴,∵,,∴,则在中,∵,∴,解得:;故答案为: 【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质以及三角形的内角和等知识,熟练掌握相关图形的性质是解题的关键.12.(2023·湖南郴州·统考中考真题)如图,在中,,,.将绕点逆时针旋转,得到,若点的对应点恰好落在线段上,则点的运动路径长是___________cm(结果用含的式子表示). 【答案】学科网(北京)股份有限公司 【分析】由于旋转到,故C的运动路径长是的圆弧长度,根据弧长公式求解即可.【详解】以A为圆心作圆弧,如图所示. 在直角中,,则,则.∴.由旋转性质可知,,又,∴是等边三角形.∴.由旋转性质知,.故弧的长度为:;故答案为:【点睛】本题考查了含角直角三角形的性质、勾股定理、旋转的性质、弧长公式等知识点,解题的关键是明确C点的运动轨迹.13.(2023·内蒙古·统考中考真题)如图,在中,,将绕点A逆时针方向旋转,得到.连接,交于点D,则的值为________. 【答案】5【分析】过点D作于点F,利用勾股定理求得,根据旋转的性质可证、学科网(北京)股份有限公司 是等腰直角三角形,可得,再由,得,证明,可得,即,再由,求得,从而求得,,即可求解.【详解】解:过点D作于点F,∵,,,∴,∵将绕点A逆时针方向旋转得到,∴,,∴是等腰直角三角形,∴,又∵,∴,∴是等腰直角三角形,∴,∵,即,∵,,∴,∴,即,又∵,∴,∴,,∴,故答案为:5.学科网(北京)股份有限公司 【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.14.(2023·黑龙江绥化·统考中考真题)已知等腰,,.现将以点为旋转中心旋转,得到,延长交直线于点D.则的长度为_______.【答案】【分析】根据题意,先求得,当以点为旋转中心逆时针旋转,过点作交于点,当以点为旋转中心顺时针旋转,过点作交于点,分别画出图形,根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示,过点作于点, ∵等腰,,.∴,∴,,∴,如图所示,当以点为旋转中心逆时针旋转,过点作交于点, ∵,∴,,学科网(北京)股份有限公司 在中,,,∵等腰,,.∴,∵以点为旋转中心逆时针旋转,∴,∴,在中,,∴,∴,∴,如图所示,当以点为旋转中心顺时针旋转,过点作交于点, 在中,,∴在中,∴∴∴∴∴,综上所述,的长度为或,学科网(北京)股份有限公司 故答案为:或.【点睛】本题考查了旋转的性质,勾股定理,含30度角的直角三角形的性质,熟练掌握旋转的性质,分类讨论是解题的关键.15.(2023·浙江嘉兴·统考中考真题)一副三角板和中,.将它们叠合在一起,边与重合,与相交于点G(如图1),此时线段的长是___________,现将绕点按顺时针方向旋转(如图2),边与相交于点H,连结,在旋转到的过程中,线段扫过的面积是___________. 【答案】;【分析】如图1,过点G作于H,根据含直角三角形的性质和等腰直角三角形的性质得出,,然后由可求出的长,进而可得线段的长;如图2,将绕点C顺时针旋转得到,与交于,连接,,是旋转到的过程中任意位置,作于N,过点B作交的延长线于M,首先证明是等边三角形,点在直线上,然后可得线段扫过的面积是弓形的面积加上的面积,求出和,然后根据线段扫过的面积列式计算即可.【详解】解:如图1,过点G作于H, ∵,,∴,,学科网(北京)股份有限公司 ∵,∴,∴;如图2,将绕点C顺时针旋转得到,与交于,连接,由旋转的性质得:,,∴是等边三角形,∵,∴,∴,∵,∴,即垂直平分,∵是等腰直角三角形,∴点在直线上,连接,是旋转到的过程中任意位置,则线段扫过的面积是弓形的面积加上的面积,∵,∴,∴,作于N,则,∴,过点B作交的延长线于M,则,∵,,∴,∴,学科网(北京)股份有限公司 ∴线段扫过的面积,,,,故答案为:,. 【点睛】本题主要考查了旋转的性质,含直角三角形的性质,二次根式的运算,解直角三角形,等边三角形的判定和性质,勾股定理,扇形的面积计算等知识,作出图形,证明点在直线上是本题的突破点,灵活运用各知识点是解题的关键.三、解答题16.(2023·北京·统考中考真题)在中、,于点M,D是线段上的动点(不与点M,C重合),将线段绕点D顺时针旋转得到线段. (1)如图1,当点E在线段上时,求证:D是的中点;(2)如图2,若在线段上存在点F(不与点B,M重合)满足,连接,,直接写出的大小,并证明.【答案】(1)见解析学科网(北京)股份有限公司 (2),证明见解析【分析】(1)由旋转的性质得,,利用三角形外角的性质求出,可得,等量代换得到即可;(2)延长到H使,连接,,可得是的中位线,然后求出,设,,求出,证明,得到,再根据等腰三角形三线合一证明即可.【详解】(1)证明:由旋转的性质得:,,∵,∴,∴,∴,∴,即D是的中点;(2);证明:如图2,延长到H使,连接,,∵,∴是的中位线,∴,,由旋转的性质得:,,∴,∵,∴,是等腰三角形,∴,,设,,则,,∴,∴,∵,∴,∴,学科网(北京)股份有限公司 ∴,在和中,,∴,∴,∵,∴,即. 【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.17.(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,,分别是斜边,的中点,. (1)将绕顶点旋转一周,请直接写出点,距离的最大值和最小值;(2)将绕顶点逆时针旋转(如图),求的长.【答案】(1)最大值为,最小值为(2)【分析】(1)根据直角三角形斜边上的中线,得出的值,进而根据题意求得最大值与最小值即可求解;(2)过点作,交的延长线于点,根据旋转的性质求得,进而得出学科网(北京)股份有限公司 ,进而可得,勾股定理解,即可求解.【详解】(1)解:依题意,,,当在的延长线上时,的距离最大,最大值为,当在线段上时,的距离最小,最小值为; (2)解:如图所示,过点作,交的延长线于点, ∵绕顶点逆时针旋转,∴,∵,∴,∴,∴,∴,在中,,在中,,∴.学科网(北京)股份有限公司 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含30度角的直角三角形的性质,熟练掌握旋转的性质,勾股定理是解题的关键.18.(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1,的顶点均在小正方形的格点上. (1)将向下平移3个单位长度得到,画出;(2)将绕点顺时针旋转90度得到,画出;(3)在(2)的运动过程中请计算出扫过的面积.【答案】(1)见解析(2)见解析(3)【分析】(1)先作出点A、B、C平移后的对应点,、,然后顺次连接即可;(2)先作出点A、B绕点顺时针旋转90度的对应点,,然后顺次连接即可;(3)证明为等腰直角三角形,求出,,根据旋转过程中扫过的面积等于的面积加扇形的面积即可得出答案.【详解】(1)解:作出点A、B、C平移后的对应点,、,顺次连接,则即为所求,如图所示: (2)解:作出点A、B绕点顺时针旋转90度的对应点,,顺次连接,则即为所求,如图所示:学科网(北京)股份有限公司 (3)解:∵,,,∴,∵,∴,∴为等腰直角三角形,∴,根据旋转可知,,∴,∴在旋转过程中扫过的面积为. 【点睛】本题主要考查了平移、旋转作图,勾股定理逆定理,扇形面积计算,解题的关键是作出平移或旋转后的对应点.19.(2023·辽宁·统考中考真题)在中,,,点为的中点,点在直线上(不与点重合),连接,线段绕点逆时针旋转,得到线段,过点作直线,过点作,垂足为点,直线交直线于点.学科网(北京)股份有限公司 (1)如图,当点与点重合时,请直接写出线段与线段的数量关系;(2)如图,当点在线段上时,求证:;(3)连接,的面积记为,的面积记为,当时,请直接写出的值.【答案】(1)(2)见解析(3)或【分析】(1)可先证,得到,根据锐角三角函数,可得到和的数量关系,进而得到线段与线段的数量关系.(2)可先证,得到,进而得到,问题即可得证.(3)分两种情况:①点D在线段上,过点作垂直于,交于点,过点作垂直于,交于点,设,利用勾股定理,可用含的代数式表示,根据三角形面积公式,即可得到答案.②点D在线段的延长线上,过点作垂直于,交延长线于点,令交于点,连接,设,可证,进一步证得是等腰直角三角形,,利用勾股定理,可用含的代数式表示,根据三角形面积公式,即可得到答案【详解】(1)解:.理由如下:如图,连接.根据图形旋转的性质可知.学科网(北京)股份有限公司 由题意可知,为等腰直角三角形,为等腰直角三角形斜边上的中线,,.又,.在和中,.,....(2)解:为等腰直角三角形斜边上的中线,.,.,,.,.,.在和中,...学科网(北京)股份有限公司 (3)解:当点D在线段延长线上时,不满足条件,故分两种情况:①点D在线段上,如图,过点作垂直于,交于点;过点作垂直于,交于点.设,则.根据题意可知,四边形和为矩形,为等腰直角三角形.,.由(2)证明可知,...根据勾股定理可知,的面积与的面积之比②点D在线段的延长线上,过点作垂直于,交延长线于点,令交于点,连接,由题意知,四边形,是矩形,学科网(北京)股份有限公司 ∵∴即又∵,∴∴而∴∴是等腰直角三角形,设,则,∴中,的面积与的面积之比【点睛】本题主要考查全等三角形的判定及性质、勾股定理以及图形旋转的性质,灵活利用全等三角形的判定及性质是解题的关键.学科网(北京)股份有限公司 20.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第页“探索”部分内容:如图,将一个三角形纸板绕点逆时针旋转到达的位置,那么可以得到:,,;,,( ) 刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“( )”处应填理由:____________________;(2)如图,小王将一个半径为,圆心角为的扇形纸板绕点逆时针旋转到达扇形纸板的位置. ①请在图中作出点;②如果,则在旋转过程中,点经过的路径长为__________;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.学科网(北京)股份有限公司 【答案】问题解决(1)旋转前后的图形对应线段相等,对应角相等(2)①见解析;②问题拓展:【分析】问题解决(1)根据旋转性质得出旋转前后的图形对应线段相等,对应角相等;(2)①分别作和的垂直平分线,两垂直平分线的交点即为所求点O;②根据弧长公式求解即可;问题拓展,连接,交于,连接,,,由旋转得,,在和中求出和的长,可以求出,再证明,即可求出最后结果.【详解】解:【问题解决】(1)旋转前后的图形对应线段相等,对应角相等 (2)①下图中,点O为所求 ②连接,,扇形纸板绕点逆时针旋转到达扇形纸板的位置,,,,设,,,学科网(北京)股份有限公司 在旋转过程中,点经过的路径长为以点为圆心,圆心角为,为半径的所对应的弧长,点经过的路径长; 【问题拓展】解:连接,交于,连接,,如图所示 .由旋转得,. 在中,.在中,,,. .., 在和中,,学科网(北京)股份有限公司 又,,.又,,.【点睛】本题考查了旋转的性质,弧长公式,解直角三角形,三角形全等的性质与判定,解题的关键是抓住图形旋转前后的对应边相等,对应角相等,正确作出辅助线构造出直角三角形.21.(2023·浙江绍兴·统考中考真题)在平行四边形中(顶点按逆时针方向排列),为锐角,且. (1)如图1,求边上的高的长.(2)是边上的一动点,点同时绕点按逆时针方向旋转得点.①如图2,当点落在射线上时,求的长.②当是直角三角形时,求的长.【答案】(1)8(2)①;②或【分析】(1)利用正弦的定义即可求得答案;(2)①先证明,再证明,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:为直角顶点;第二种:为直角顶点;第三种,为直角顶点,但此种情况不成立,故最终有两个答案.【详解】(1)在中,,在中,.学科网(北京)股份有限公司 (2)①如图1,作于点,由(1)得,,则,作交延长线于点,则, ∴.∵∴.由旋转知,∴.设,则.∵,∴,∴,∴,即,∴,∴.②由旋转得,,又因为,所以.情况一:当以为直角顶点时,如图2. 学科网(北京)股份有限公司 ∵,∴落在线段延长线上.∵,∴,由(1)知,,∴.情况二:当以为直角顶点时,如图3. 设与射线的交点为,作于点.∵,∴,∵,∴,∴.又∵,∴,∴.设,则,∴∵,∴,∴,学科网(北京)股份有限公司 ∴,∴,化简得,解得,∴.情况三:当以为直角顶点时,点落在的延长线上,不符合题意.综上所述,或.【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.22.(2023·四川南充·统考中考真题)如图,正方形中,点在边上,点是的中点,连接,. (1)求证:;(2)将绕点逆时针旋转,使点的对应点落在上,连接.当点在边上运动时(点不与,重合),判断的形状,并说明理由.(3)在(2)的条件下,已知,当时,求的长.【答案】(1)见解析(2)等腰直角三角形,理由见解析(3)【分析】(1)根据正方形的基本性质以及“斜中半定理”等推出,即可证得结论;(2)由旋转的性质得,从而利用等腰三角形的性质推出,再结合正方形对角线的性质推出,即可证得结论;(3)结合已知信息推出,从而利用相似三角形的性质以及勾股定理进行计算求解即可.学科网(北京)股份有限公司 【详解】(1)证:∵四边形为正方形,∴,,∵点是的中点,∴,∴,∴,即:,在与中,∴,∴;(2)解:为等腰直角三角形,理由如下:由旋转的性质得:,∴,∴,,∵,∴,即:,∴,∴,∴,∴,∴为等腰直角三角形;(3)解:如图所示,延长交于点,∵,,∴,,∴,∵,∴,学科网(北京)股份有限公司 ∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∵,∴,设,则,,∴,解得:,(不合题意,舍去),∴. 【点睛】本题考查正方形的性质,旋转的性质,全等三角形和相似三角形的判定与性质等,理解并熟练运用基本图形的证明方法和性质,掌握勾股定理等相关计算方式是解题关键.23.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上,李老师让同桌两位同学用相同的两块含的三角板开展数学探究活动,两块三角板分别记作和,设.【操作探究】学科网(北京)股份有限公司 如图1,先将和的边、重合,再将绕着点A按顺时针方向旋转,旋转角为,旋转过程中保持不动,连接. (1)当时,________;当时,________;(2)当时,画出图形,并求两块三角板重叠部分图形的面积;(3)如图2,取的中点F,将绕着点A旋转一周,点F的运动路径长为________.【答案】(1)2;30或210(2)画图见解析;(3)【分析】(1)当时,与重合,证明为等边三角形,得出;当时,根据勾股定理逆定理得出,两种情况讨论:当在下方时,当在上方时,分别画出图形,求出结果即可;(2)证明四边形是正方形,得出,求出,得出,求出,根据求出两块三角板重叠部分图形的面积即可;(3)根据等腰三角形的性质,得出,即,确定将绕着点A旋转一周,点F在以为直径的圆上运动,求出圆的周长即可.【详解】(1)解:∵和中,∴,∴当时,与重合,如图所示:连接, 学科网(北京)股份有限公司 ∵,,∴为等边三角形,∴;当时,∵,∴当时,为直角三角形,,∴,当在下方时,如图所示: ∵,∴此时;当在上方时,如图所示: ∵,∴此时;综上分析可知,当时,或;故答案为:2;30或210.(2)解:当时,如图所示: 学科网(北京)股份有限公司 ∵,∴,∴,∵,又∵,∴四边形是矩形,∵,∴四边形是正方形,∴,∴,∴,∵,∴,∴,即两块三角板重叠部分图形的面积为.(3)解:∵,为的中点,∴,∴,∴将绕着点A旋转一周,点F在以为直径的圆上运动,∵∴点F运动的路径长为.故答案为:.学科网(北京)股份有限公司 【点睛】本题主要考查了正方形的判定和性质,解直角三角形,旋转的性质,确定圆的条件,等腰三角形的性质,等边三角形的判定和性质,解题的关键是画出相应的图形,数形结合,并注意分类讨论.24.(2023·湖南·统考中考真题)(1)[问题探究]如图1,在正方形中,对角线相交于点O.在线段上任取一点P(端点除外),连接. ①求证:;②将线段绕点P逆时针旋转,使点D落在的延长线上的点Q处.当点P在线段上的位置发生变化时,的大小是否发生变化?请说明理由;③探究与的数量关系,并说明理由.(2)[迁移探究]如图2,将正方形换成菱形,且,其他条件不变.试探究与的数量关系,并说明理由. 【答案】(1)①见解析;②不变化,,理由见解析;③,理由见解析(2),理由见解析【分析】(1)①根据正方形的性质证明,即可得到结论;②作,垂足分别为点M、N,如图,可得,证明四边形是矩形,推出学科网(北京)股份有限公司 ,证明,得出,进而可得结论;③作交于点E,作于点F,如图,证明,即可得出结论;(2)先证明,作交于点E,交于点G,如图,则四边形是平行四边形,可得,都是等边三角形,进一步即可证得结论.【详解】(1)①证明:∵四边形是正方形,∴,∵,∴,∴;②的大小不发生变化,;证明:作,垂足分别为点M、N,如图, ∵四边形是正方形,∴,,∴四边形是矩形,,∴,∵,∴,∴,∵,∴,即;③;证明:作交于点E,作于点F,如图,学科网(北京)股份有限公司 ∵四边形是正方形,∴,,∴,四边形是矩形,∴,∴,∵,,∴,作于点M,则,∴,∵,∴,∴;(2);证明:∵四边形是菱形,,∴,∴是等边三角形,垂直平分,∴,∵,∴,作交于点E,交于点G,如图,则四边形是平行四边形,,,∴,都是等边三角形,∴,学科网(北京)股份有限公司 作于点M,则,∴,∴.【点睛】本题是四边形综合题,主要考查了正方形、菱形的性质,矩形、平行四边形、等边三角形的判定和性质,全等三角形的判定和性质以及解直角三角形等知识,熟练掌握相关图形的判定和性质、正确添加辅助线是解题的关键.25.(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当的三个内角均小于时,如图1,将绕,点C顺时针旋转得到,连接, 由,可知为①三角形,故,又,故,由②可知,当B,P,,A在同一条直线上时,取最小值,如图2,最小值为,此时的P点为该三角形的“费马点”,且有③;已知当有一个内角大于或等于时,“费马点”为该三角形的某个顶点.如图3,若,则该三角形的“费马点”为④点.(2)如图4,在中,三个内角均小于,且,已知点P为学科网(北京)股份有限公司 的“费马点”,求的值; (3)如图5,设村庄A,B,C的连线构成一个三角形,且已知.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/,a元/,元/,选取合适的P的位置,可以使总的铺设成本最低为___________元.(结果用含a的式子表示)【答案】(1)①等边;②两点之间线段最短;③;④A.(2)(3)【分析】(1)根据旋转的性质和两点之间线段最短进行推理分析即可得出结论;(2)根据(1)的方法将绕,点C顺时针旋转得到,即可得出可知当B,P,,A在同一条直线上时,取最小值,最小值为,在根据可证明,由勾股定理求即可,(3)由总的铺设成本,通过将绕,点C顺时针旋转得到,得到等腰直角,得到,即可得出当B,P,,A在同一条直线上时,取最小值,即取最小值为,然后根据已知和旋转性质求出即可.【详解】(1)解:∵,∴为等边三角形;∴,,又,故,由两点之间线段最短可知,当B,P,,A在同一条直线上时,取最小值,最小值为,此时的P点为该三角形的“费马点”,∴,,∴,,学科网(北京)股份有限公司 又∵,∴,∴,∴;∵,∴,,∴,,∴三个顶点中,顶点A到另外两个顶点的距离和最小.又∵已知当有一个内角大于或等于时,“费马点”为该三角形的某个顶点.∴该三角形的“费马点”为点A,故答案为:①等边;②两点之间线段最短;③;④.(2)将绕,点C顺时针旋转得到,连接,由(1)可知当B,P,,A在同一条直线上时,取最小值,最小值为, ∵,∴,又∵∴,由旋转性质可知:,∴,∴最小值为,(3)∵总的铺设成本∴当最小时,总的铺设成本最低,将绕,点C顺时针旋转得到,连接,学科网(北京)股份有限公司 由旋转性质可知:,,,,∴,∴,当B,P,,A在同一条直线上时,取最小值,即取最小值为, 过点作,垂足为,∵,,∴,∴,∴,∴,∴的最小值为总的铺设成本(元)故答案为:【点睛】本题考查了费马点求最值问题,涉及到的知识点有旋转的性质,等边三角形的判定与性质,勾股定理,以及两点之间线段最短等知识点,读懂题意,利用旋转作出正确的辅助线是解本题的关键.26.(2023·四川·统考中考真题)如图1,已知线段,,线段绕点在直线上方旋转,连接,以为边在上方作,且. 学科网(北京)股份有限公司 (1)若,以为边在上方作,且,,连接,用等式表示线段与的数量关系是 ;(2)如图2,在(1)的条件下,若,,,求的长;(3)如图3,若,,,当的值最大时,求此时的值.【答案】(1)(2)(3)【分析】(1)在中,,,且,,可得,根据相似三角形的性质得出,,进而证明,根据相似三角形的性质即可求解;(2)延长交于点,如图所示,在中,求得,进而求得的长,根据(1)的结论,得出,在中,勾股定理求得,进而根据,即可求解.(3)如图所示,以为边在上方作,且,,连接,,,同(1)可得,进而得出在以为圆心,为半径的圆上运动,当点三点共线时,的值最大,进而求得,,根据得出,过点作,于点,分别求得,然后求得,最后根据正切的定义即可求解.【详解】(1)解:在中,,,且,,∴,,∴,,∴∴∴,故答案为:.(2)∵,且,,学科网(北京)股份有限公司 ∴,,延长交于点,如图所示, ∵,∴,∴在中,,,∴,由(1)可得,∴,∴,在中,,∵,∴,∴,∴;(3)解:如图所示,以为边在上方作,且,,连接,,, 同(1)可得则,学科网(北京)股份有限公司 ∵,则,在中,,,∴在以为圆心,为半径的圆上运动,∴当点三点共线时,的值最大,此时如图所示,则, 在中,∴,,∵,∴,过点作,于点,∴,,∵,∴,∴,中,.【点睛】本题考查了相似三角形的性质与判定,勾股定理,解直角三角形,正切的定义,求圆外一点到圆的距离的最值问题,熟练掌握相似三角形的性质与判定是解题的关键.学科网(北京)股份有限公司 27.(2023·湖北黄冈·统考中考真题)【问题呈现】和都是直角三角形,,连接,,探究,的位置关系. (1)如图1,当时,直接写出,的位置关系:____________;(2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当时,将绕点C旋转,使三点恰好在同一直线上,求的长.【答案】(1)(2)成立;理由见解析(3)或【分析】(1)根据,得出,,证明,得出,根据,求出,即可证明结论;(2)证明,得出,根据,求出,即可证明结论;(3)分两种情况,当点E在线段上时,当点D在线段上时,分别画出图形,根据勾股定理求出结果即可.【详解】(1)解:∵,∴,,∵,∴,∴,∴,∴,学科网(北京)股份有限公司 ∵,,∴,∴;故答案为:. (2)解:成立;理由如下:∵,∴,∴,∵,∴,∴,∵,,∴,∴; 学科网(北京)股份有限公司 (3)解:当点E在线段上时,连接,如图所示: 设,则,根据解析(2)可知,,∴,∴,根据解析(2)可知,,∴,根据勾股定理得:,即,解得:或(舍去),∴此时;当点D在线段上时,连接,如图所示: 设,则,根据解析(2)可知,,∴,∴,根据解析(2)可知,,∴,根据勾股定理得:,即,学科网(北京)股份有限公司 解得:或(舍去),∴此时;综上分析可知,或.【点睛】本题主要考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.28.(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有角的三角尺放在正方形中,使角的顶点始终与正方形的顶点重合,绕点旋转三角尺时,角的两边,始终与正方形的边,所在直线分别相交于点,,连接,可得. 【探究一】如图②,把绕点C逆时针旋转得到,同时得到点在直线上.求证:;【探究二】在图②中,连接,分别交,于点,.求证:;【探究三】把三角尺旋转到如图③所示位置,直线与三角尺角两边,分别交于点,.连接交于点,求的值.【答案】[探究一]见解析;[探究二]见解析;[探究三]【分析】[探究一]证明,即可得证;[探究二]根据正方形的性质证明,根据三角形内角和得出,加上公共角,进而即可证明[探究三]先证明,得出,,将绕点顺时针旋转得到,则点在直线上.得出,根据全等三角形的性质得出,进而可得,证明,根据相似三角形的性质得出,即可得出结论.学科网(北京)股份有限公司 【详解】[探究一]∵把绕点C逆时针旋转得到,同时得到点在直线上,∴,∴,∴,在与中∴∴[探究二]证明:如图所示, ∵四边形是正方形,∴,又,∴,∵,∴,又∵,∴,又∵公共角,∴;[探究三]证明:∵是正方形的对角线,∴,,学科网(北京)股份有限公司 ∴,∵,∴,即,∴,∴,,如图所示,将绕点顺时针旋转得到,则点在直线上. ∴,,∴,又,∴,∴,∵,∴,又,∴,∴,即.【点睛】本题考查了全等三角形的性质与判定,旋转的性质,正方形的性质,相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.学科网(北京)股份有限公司 29.(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形的边上任意取一点G,以为边长向外作正方形,将正方形绕点B顺时针旋转. 特例感知:(1)当在上时,连接相交于点P,小红发现点P恰为的中点,如图①.针对小红发现的结论,请给出证明;(2)小红继续连接,并延长与相交,发现交点恰好也是中点P,如图②,根据小红发现的结论,请判断的形状,并说明理由;规律探究:(3)如图③,将正方形绕点B顺时针旋转,连接,点P是中点,连接,,,的形状是否发生改变?请说明理由.【答案】(1)见解析;(2)是等腰直角三角形,理由见解析;(3)的形状不改变,见解析【分析】(1)连接,,,根据正方形的性质求出,证明,推出,再利用余角的性质求出,推出即可;(2)根据正方形的性质直接得到,推出,得到是等腰直角三角形;(3)延长至点M,使,连接,证明,得到,推出,设交于点H,交于点N,得到,由得到,推出,进而得到,再证明,得到,,证得,再由,根据等腰三角形的三线合一的性质求出,即可证得是等腰直角三角形.【详解】(1)证明:连接,,,如图,学科网(北京)股份有限公司 ∵四边形,都是正方形,∴,∴,∵四边形是正方形,∴,又∵,∴,∴,∴,∵,∴,∴,∴,即点P恰为的中点;(2)是等腰直角三角形,理由如下:∵四边形,都是正方形,∴∴,∴是等腰直角三角形;(3)的形状不改变,延长至点M,使,连接,学科网(北京)股份有限公司 ∵四边形、四边形都是正方形,∴,,∵点P为的中点,∴,∵,∴,∴,∴,,∴,设交于点H,交于点N,∴,∵,∴,∵,∴,∵,∴,又∵,∴,∴,,学科网(北京)股份有限公司 ∵,∴,即,∵,∴,即,∴,∴,∴,∴是等腰直角三角形.【点睛】此题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质等,(3)中作辅助线利用中点构造全等三角形是解题的难点,熟练掌握各性质和判定定理是解题的关键.30.(2023·贵州·统考中考真题)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形中,,过点作射线,垂足为,点在上. (1)【动手操作】如图②,若点在线段上,画出射线,并将射线绕点逆时针旋转与交于点,根据题意在图中画出图形,图中的度数为_______度;(2)【问题探究】根据(1)所画图形,探究线段与的数量关系,并说明理由;(3)【拓展延伸】如图③,若点在射线上移动,将射线绕点逆时针旋转与交于点,探究线段之间的数量关系,并说明理由.【答案】(1)作图见解析;135(2);理由见解析(3)或;理由见解析【分析】(1)根据题意画图即可;先求出,根据,求出学科网(北京)股份有限公司 ;(2)根据,,证明、P、B、E四点共圆,得出,求出,根据等腰三角形的判定即可得出结论;(3)分两种情况,当点P在线段上时,当点P在线段延长线上时,分别画出图形,求出之间的数量关系即可.【详解】(1)解:如图所示: ∵,∴,∵,∴,∴;故答案为:135.(2)解:;理由如下:连接,如图所示: 根据旋转可知,,∵,∴、P、B、E四点共圆,∴,∴,∴,∴.学科网(北京)股份有限公司 (3)解:当点P在线段上时,连接,延长,作于点F,如图所示: 根据解析(2)可知,,∵,∴,∴,∵,∴,∴,∵,,∴为等腰直角三角形,∴,∵为等腰直角三角形,∴,即;当点P在线段延长线上时,连接,作于点F,如图所示: 根据旋转可知,,∵,∴、B、P、E四点共圆,∴,学科网(北京)股份有限公司 ∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∵,,∴为等腰直角三角形,∴,即;综上分析可知,或.【点睛】本题主要考查了等腰三角形的判定和性质,三角形全等的判定和性质,圆周角定理,四点共圆,等腰直角三角形的性质,解题的关键是作出图形和相关的辅助线,数形结合,并注意分类讨论.学科网(北京)股份有限公司
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023中考数学真题分项汇报2整式及其运算(解析版)
2023中考数学真题分项汇报3因式分解(解析版)
2023中考数学真题分项汇报11反比例函数及其应用(共65题)(解析版)
2023中考数学真题分项汇报12二次函数图象性质与应用(共55题)(解析版)
2023中考数学真题分项汇报13二次函数解答压轴题(共62题)(解析版)
2023中考数学真题分项汇报14几何图形初步与三视图、相交线与平行线(共84题)(解析版)
2023中考数学真题分项汇报15三角形及全等三角形(共30题)(解析版)
2023中考数学真题分项汇报18矩形菱形正方形(共39题)(解析版)
2023中考数学真题分项汇报19图形的平移翻折对称(共30题)(解析版)
2023中考数学真题分项汇报19图形的平移翻折对称(共30题)(原卷版)
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-08-08 00:33:01
页数:64
价格:¥20
大小:5.07 MB
文章作者:xmxhq
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划