首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
初中
>
数学
>
2023中考数学真题分项汇报19图形的平移翻折对称(共30题)(解析版)
2023中考数学真题分项汇报19图形的平移翻折对称(共30题)(解析版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/44
2
/44
剩余42页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题19图形的平移翻折对称(30题)一、单选题1.(2023·四川南充·统考中考真题)如图,将沿向右平移得到,若,,则的长是( ) A.2B.C.3D.5【答案】A【分析】利用平移的性质得到,即可得到的长.【详解】解:∵沿方向平移至处.∴,故选:A.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.2.(2023·山东·统考中考真题)如图,四边形是一张矩形纸片.将其按如图所示的方式折叠:使边落在边上,点落在点处,折痕为;使边落在边上,点落在点处,折痕为.若矩形与原矩形相似,,则的长为( ) A.B.C.D.【答案】C【分析】先根据折叠的性质与矩形性质,求得,设的长为x,则,再根据相似多边形性质得出,即,求解即可.【详解】解:,由折叠可得:,,学科网(北京)股份有限公司 ∵矩形,∴,∴,设的长为x,则,∵矩形,∴,∵矩形与原矩形相似,∴,即,解得:(负值不符合题意,舍去)∴,故选:C.【点睛】本题考查矩形的折叠问题,相似多边形的性质,熟练掌握矩形的性质和相似多边形的性质是解题的关键.3.(2023·内蒙古赤峰·统考中考真题)如图,在中,,,.点F是中点,连接,把线段沿射线方向平移到,点D在上.则线段在平移过程中扫过区域形成的四边形的周长和面积分别是( ) A.16,6B.18,18C.16.12D.12,16【答案】C【分析】先论证四边形是平行四边形,再分别求出、、,继而用平行四边形的周长公式和面积公式求解即可.【详解】由平移的性质可知:,∴四边形是平行四边形,在中,,,,∴学科网(北京)股份有限公司 在中,,,点F是中点∴∵,点F是中点∴,,∴点D是的中点,∴∵D是的中点,点F是中点,∴是的中位线,∴∴四边形的周长为:,四边形的面积为:.故选:C.【点睛】本题考查平移的性质,平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半,平行线分线段成比例,三角形中位线定理等知识,推导四边形是平行四边形和是的中位线是解题的关键.4.(2023·黑龙江·统考中考真题)如图,在平面直角坐标中,矩形的边,将矩形沿直线折叠到如图所示的位置,线段恰好经过点,点落在轴的点位置,点的坐标是( ) A.B.C.D.【答案】D【分析】首先证明,求出,连结,设与交于点F,然后求出学科网(北京)股份有限公司 ,可得,再用含的式子表示出,最后在中,利用勾股定理构建方程求出即可解决问题.【详解】解:∵矩形的边,,∴,,,由题意知,∴,又∵,∴,∴,由折叠知,,∴,∴,即,连接,设与交于点F,∴,∵,∴四边形是矩形,∴,,,∴,由折叠知,,∴,∵在中,,∴,解得:,∴点的坐标是,故选:D.学科网(北京)股份有限公司 【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,折叠的性质以及勾股定理的应用等知识,通过证明三角形相似,利用相似三角形的性质求出的长是解题的关键.5.(2023·浙江嘉兴·统考中考真题)如图,已知矩形纸片,其中,现将纸片进行如下操作:第一步,如图①将纸片对折,使与重合,折痕为,展开后如图②;第二步,再将图②中的纸片沿对角线折叠,展开后如图③;第三步,将图③中的纸片沿过点的直线折叠,使点落在对角线上的点处,如图④.则的长为( ) A.B.C.D.【答案】D【分析】根据折叠的性质得出,,等面积法求得,根据,即可求解.【详解】解:如图所示,连接, ∵折叠,学科网(北京)股份有限公司 ∴∴在以为圆心,为直径的圆上,∴,∴∵矩形,其中,∴∴,∴,∵∴,故选:D.【点睛】本题考查了矩形与折叠问题,直径所对的圆周角是直角,勾股定理,正切的定义,熟练掌握以上知识是解题的关键.6.(2023·甘肃武威·统考中考真题)如图,将矩形对折,使边与,与分别重合,展开后得到四边形.若,,则四边形的面积为( ) A.2B.4C.5D.6【答案】B【分析】由题意可得四边形是菱形,,,由菱形的面积等于对角线乘积的一半即可得到答案.【详解】解:∵将矩形对折,使边与,与分别重合,展开后得到四边形,∴,与互相平分,∴四边形是菱形,∵,,学科网(北京)股份有限公司 ∴菱形的面积为.故选:B.【点睛】此题考查了矩形的折叠、菱形的判定和性质等知识,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.7.(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形沿着直线折叠,使点C与延长线上的点Q重合.交于点F,交延长线于点E.交于点P,于点M,,则下列结论,①,②,③,④.正确的是( ) A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出,再求出即可判断②正确;由得,求出即可判断③正确;根据即可判断④错误.【详解】由折叠性质可知:,∵,∴.∴.∴.故正确;∵,,∴.∵,∴.故正确;∵,∴.学科网(北京)股份有限公司 ∴.∵,∴.故正确;∵,∴.∴.∴.∵,∴.∴与不相似.∴.∴与不平行.故错误;故选A.【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.二、填空题8.(2023·吉林长春·统考中考真题)如图,将正五边形纸片折叠,使点与点重合,折痕为学科网(北京)股份有限公司 ,展开后,再将纸片折叠,使边落在线段上,点的对应点为点,折痕为,则的大小为__________度. 【答案】【分析】根据题意求得正五边形的每一个内角为,根据折叠的性质求得在中,根据三角形内角和定理即可求解.【详解】解:∵正五边形的每一个内角为,将正五边形纸片折叠,使点与点重合,折痕为,则,∵将纸片折叠,使边落在线段上,点的对应点为点,折痕为,∴,,在中,,故答案为:.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键.9.(2023·全国·统考中考真题)如图,在中,.点,分别在边,上,连接,将沿折叠,点的对应点为点.若点刚好落在边上,,则的长为__________. 【答案】【分析】根据折叠的性质以及含30度角的直角三角形的性质得出,即可求解.学科网(北京)股份有限公司 【详解】解:∵将沿折叠,点的对应点为点.点刚好落在边上,在中,,,∴,∴,故答案为:.【点睛】本题考查了折叠的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.10.(2023·湖北宜昌·统考中考真题)如图,小宇将一张平行四边形纸片折叠,使点落在长边上的点处,并得到折痕,小宇测得长边,则四边形的周长为_________. 【答案】【分析】可证,从而可得,再证四边形是平行四边形,可得,即可求解.【详解】解:四边形是平行四边形,,,由折叠得:,,,,,,,,四边形是平行四边形,学科网(北京)股份有限公司 .故答案:.【点睛】本题考查了平行四边形判定及性质,折叠的性质,掌握相关的判定方法及性质是解题的关键.11.(2023·辽宁·统考中考真题)如图,在三角形纸片中,,点是边上的动点,将三角形纸片沿对折,使点落在点处,当时,的度数为___________. 【答案】或【分析】分两种情况考虑,利用对称的性质及三角形内角和等知识即可完成求解.【详解】解:由折叠的性质得:;∵,∴;①当在下方时,如图,∵,∴,∴; ②当在上方时,如图,∵,∴,∴;学科网(北京)股份有限公司 综上,的度数为或;故答案为:或.【点睛】本题考查了折叠的性质,三角形内角和,注意分类讨论.12.(2023·江苏徐州·统考中考真题)如图,在中,,点在边上.将沿折叠,使点落在点处,连接,则的最小值为_______. 【答案】【分析】由折叠性质可知,然后根据三角不等关系可进行求解.【详解】解:∵,∴,由折叠的性质可知,∵,∴当、、B三点在同一条直线时,取最小值,最小值即为;故答案为.【点睛】本题主要考查勾股定理、折叠的性质及三角不等关系,熟练掌握勾股定理、折叠的性质及三角不等关系是解题的关键.13.(2023·黑龙江齐齐哈尔·统考中考真题)矩形纸片中,,,点在学科网(北京)股份有限公司 边所在的直线上,且,将矩形纸片折叠,使点与点重合,折痕与,分别交于点,,则线段的长度为______.【答案】或【分析】分点在点右边与左边两种情况分别画出图形,根据勾股定理即可求解.【详解】解:∵折叠,∴,∵四边形是矩形,∴∴,又∴∴,当点在点的右侧时,如图所示,设交于点, ∵,,,∴中,,则,∵,∴∴,当点在点的左侧时,如图所示,设交于点,∵,,,∴中,学科网(北京)股份有限公司 则,∵,∴∴,综上所述,的长为:或,故答案为:或.【点睛】本题考查了矩形与折叠问题,勾股定理,分类讨论是解题的关键.14.(2023·四川凉山·统考中考真题)如图,在纸片中,,是边上的中线,将沿折叠,当点落在点处时,恰好,若,则_________. 【答案】【分析】由,,是边上的中线,可知,则,由翻折的性质可知,,,则,如图,记与的交点为,,由,可得,根据,计算求解即可.【详解】解:∵,,是边上的中线,∴,∴,由翻折的性质可知,,,学科网(北京)股份有限公司 ∴,如图,记与的交点为, ∵,∴,∵,∴,∴,故答案为:.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,翻折的性质,等边对等角,三角形内角和定理,正切.解题的关键在于对知识的熟练掌握与灵活运用.15.(2023·新疆·统考中考真题)如图,在中,,,,点是上一动点,将沿折叠得到,当点恰好落在上时,的长为______. 【答案】【分析】过点作交的延长线于点,根据平行四边形的性质以及已知条件得出,进而求得,根据折叠的性质得出,进而在中,勾股定理即可求解.【详解】解:如图所示,过点作交的延长线于点, 学科网(北京)股份有限公司 ∵在中,,,,∴,∴,在中,∵将沿折叠得到,当点恰好落在上时,∴又∴∴∴设,∴在中,∴解得:(负整数)故答案为:.【点睛】本题考查了折叠的性质,平行四边形的性质,解直角三角形,熟练掌握折叠的性质是解题的关键.16.(2023·江苏扬州·统考中考真题)如图,已知正方形的边长为1,点E、F分别在边上,将正方形沿着翻折,点B恰好落在边上的点处,如果四边形与四边形的面积比为3∶5,那么线段的长为________. 【答案】【分析】连接,过点作于点,设,则,则学科网(北京)股份有限公司 ,根据已知条件,分别表示出,证明,得出,在中,,勾股定理建立方程,解方程即可求解.【详解】解:如图所示,连接,过点作于点, ∵正方形的边长为1,四边形与四边形的面积比为3∶5,∴,设,则,则∴即∴∴,∴,∵折叠,∴,∴,∵,∴,又,∴,∴在中,即学科网(北京)股份有限公司 解得:,故答案为:.【点睛】本题考查了正方形的性质,折叠的性质,勾股定理,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.17.(2023·湖北随州·统考中考真题)如图,在矩形中,,M是边上一动点(不含端点),将沿直线对折,得到.当射线交线段于点P时,连接,则的面积为___________;的最大值为___________. 【答案】;【分析】(1)根据等底等高的三角形和矩形面积关系分析求解;(2)结合勾股定理分析可得,当最大时,即最大,通过分析点N的运动轨迹,结合勾股定理确定的最值,从而求得的最大值.【详解】解:由题意可得的面积等于矩形的一半,∴的面积为,在中,,∴当最大时,即最大,由题意可得点N是在以D为圆心4为半径的圆上运动,当射线与圆相切时,最大,此时C、N、M三点共线,如图: 由题意可得:,,∴,,学科网(北京)股份有限公司 ∴∵,∴,∴,∴,∴,在中,,故答案为:,.【点睛】本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,分析点的运动轨迹,证明三角形全等是解决问题的关键.18.(2023·湖南·统考中考真题)如图,在矩形中,,动点在矩形的边上沿运动.当点不与点重合时,将沿对折,得到,连接,则在点的运动过程中,线段的最小值为__________. 【答案】/【分析】根据折叠的性质得出在为圆心,为半径的弧上运动,进而分类讨论当点在上时,当点在上时,当在上时,即可求解.【详解】解:∵在矩形中,,∴,,如图所示,当点在上时, 学科网(北京)股份有限公司 ∵∴在为圆心,为半径的弧上运动,当三点共线时,最短,此时,当点在上时,如图所示, 此时当在上时,如图所示,此时 综上所述,的最小值为,故答案为:.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.19.(2023·湖北武汉·统考中考真题)如图,平分等边的面积,折叠得到分别与相交于两点.若,用含的式子表示的长是________.学科网(北京)股份有限公司 【答案】【分析】先根据折叠的性质可得,,从而可得,再根据相似三角形的判定可证,根据相似三角形的性质可得,,然后将两个等式相加即可得.【详解】解:是等边三角形,,∵折叠得到,,,,平分等边的面积,,,又,,,,,,解得或(不符合题意,舍去),故答案为:.学科网(北京)股份有限公司 【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.20.(2023·广东深圳·统考中考真题)如图,在中,,,点D为上一动点,连接,将沿翻折得到,交于点G,,且,则______. 【答案】【分析】于点M,于点N,则,过点G作于点P,设,根据得出,继而求得,,,再利用,求得,利用勾股定理求得,,故,【详解】由折叠的性质可知,是的角平分线,,用证明,从而得到,设,则,,利用勾股定理得到即,化简得,从而得出,利用三角形的面积公式得到:.作于点M,于点N,则,过点G作于点P, ∵于点M,∴,学科网(北京)股份有限公司 设,则,,又∵,,∴,,,∵,即,∴,,在中,,,设,则∴∴,∵,,,∴,∵,,∴,∴,∵,,,,∴,∴,设,则,,在中,,即,化简得:,∴,∴故答案是:.学科网(北京)股份有限公司 【点睛】本题考查解直角三角形,折叠的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等知识,正确作出辅助线并利用勾股定理列出方程是解题的关键.21.(2023·黑龙江·统考中考真题)矩形中,,将矩形沿过点的直线折叠,使点落在点处,若是直角三角形,则点到直线的距离是__________.【答案】6或或【分析】由折叠的性质可得点E在以点A为圆心,长为半径的圆上运动,延长交的另一侧于点E,则此时是直角三角形,易得点到直线的距离;当过点D的直线与圆相切于点E时,是直角三角形,分两种情况讨论即可求解.【详解】解:由题意矩形沿过点的直线折叠,使点落在点处,可知点E在以点A为圆心,长为半径的圆上运动,如图,延长交的另一侧于点E,则此时是直角三角形,点到直线的距离为的长度,即, 当过点D的直线与圆相切与点E时,是直角三角形,分两种情况,①如图,过点E作交于点H,交于点G, ∵四边形是矩形,∴,∴四边形是矩形,∵,,,由勾股定理可得,∵,学科网(北京)股份有限公司 ∴,∴到直线的距离,②如图,过点E作交于点N,交于点M, ∵四边形是矩形,∴,∴四边形是矩形,∵,,,由勾股定理可得,∵,∴,∴到直线的距离,综上,6或或,故答案为:6或或.【点睛】本题考查了矩形的折叠问题切线的应用,以及勾股定理,找到点E的运动轨迹是解题的关键.22.(2023·四川成都·统考中考真题)如图,在中,,平分交于点,过作交于点,将沿折叠得到,交于点.若,则__________. 【答案】【分析】过点作于,证明,得出,根据,得学科网(北京)股份有限公司 ,设,,则,则,在中,,在中,,则,解方程求得,则,,勾股定理求得,根据正切的定义,即可求解.【详解】解:如图所示,过点作于, ∵平分交于点,∴,∴∴∵折叠,∴,∴,又∵∴∴∴∵,,则,∴∴,,∵设,,则,则,∵∴在中,学科网(北京)股份有限公司 在中,∴即解得:∴,则∴故答案为:.【点睛】本题考查了求正切,折叠的性质,勾股定理,平行线分线段成比例,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.23.(2023·四川南充·统考中考真题)如图,在等边中,过点C作射线,点M,N分别在边,上,将沿折叠,使点B落在射线上的点处,连接,已知.给出下列四个结论:①为定值;②当时,四边形为菱形;③当点N与C重合时,;④当最短时,.其中正确的结论是________(填写序号)【答案】①②④【分析】根据等边三角形的性质可得,根据折叠的性质可得,由此即可判断①正确;先解直角三角形可得,从而可得,然后根据平行线的判定可得,根据菱形的判定即可得②正确;先根据折叠的性质可得,从而可得,再根据等腰三角形的性质可得,然后根据即可判断③错误;当最短时,则,过点作于点学科网(北京)股份有限公司 ,连接,交于点,先利用勾股定理求出,根据折叠的性质可得,设,则,,再利用勾股定理可得,,然后根据建立方程,解一元二次方程可得的值,由此即可判断④正确.【详解】解:是等边三角形,且,,,由折叠的性质得:,,是定值,则结论①正确;当时,则,在中,,,,,由折叠的性质得:,,,四边形为平行四边形,又,四边形为菱形,则结论②正确;如图,当点与重合时,,,由折叠的性质得:,学科网(北京)股份有限公司 ,,,,则结论③错误;当最短时,则,如图,过点作于点,连接,交于点,,,,由折叠的性质得:,设,则,在中,,即,解得,, 设,则,,,,,,解得或(不符合题意,舍去),学科网(北京)股份有限公司 ,则结论④正确;综上,正确的结论是①②④,故答案为:①②④.【点睛】本题考查了等边三角形的性质、折叠的性质、解直角三角形、菱形的判定、一元二次方程的应用等知识点,熟练掌握折叠的性质是解题关键.24.(2023·浙江杭州·统考中考真题)如图,在中,,点分别在边,上,连接,已知点和点关于直线对称.设,若,则_________(结果用含的代数式表示). 【答案】【分析】先根据轴对称的性质和已知条件证明,再证,推出,通过证明,推出,即可求出的值.【详解】解:点和点关于直线对称,,,.,,点和点关于直线对称,,又,,学科网(北京)股份有限公司 ,,,点和点关于直线对称,,,,,在和中,,.在中,,,,,,,,,,.,,解得,.故答案为:.学科网(北京)股份有限公司 【点睛】本题考查相似三角形的判定与性质,轴对称的性质,平行线的判定与性质,等腰三角形的性质,三角形外角的定义和性质等,有一定难度,解题的关键是证明.三、解答题25.(2023·安徽·统考中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中,点均为格点(网格线的交点). (1)画出线段关于直线对称的线段;(2)将线段向左平移2个单位长度,再向上平移1个单位长度,得到线段,画出线段;(3)描出线段上的点及直线上的点,使得直线垂直平分.【答案】见解析【分析】(1)根据轴对称的性质找到关于直线的对称点,,连接,则线段即为所求;(2)根据平移的性质得到线段即为所求;(3)勾股定理求得,,则证明得出,则,则点即为所求.【详解】(1)解:如图所示,线段即为所求;学科网(北京)股份有限公司 (2)解:如图所示,线段即为所求; (3)解:如图所示,点即为所求 如图所示,学科网(北京)股份有限公司 ∵,,∴,又,∴,∴,又,∴∴,∴垂直平分.【点睛】本题考查了轴对称作图,平移作图,勾股定理与网格问题,熟练掌握以上知识是解题的关键.26.(2023·四川广安·统考中考真题)将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上). 【答案】见解析(答案不唯一,符合题意即可)学科网(北京)股份有限公司 【分析】根据轴对称图形和中心对称图形的性质进行作图即可.【详解】解:①要求是轴对称图形但不是中心对称图形,则可作等腰梯形,如图四边形即为所求;②要求是中心对称图形但不是轴对称图形,则可作一般平行四边形,如图四边形即为所求;③要求既是轴对称图形又是中心对称图形,则可作菱形、矩形等,如图四边形即为所求;④要求既不是轴对称图形又不是中心对称图形,则考虑作任意四边形,如图四边形即为所求. 【点睛】本题考查轴对称图形和中心对称图形的概念及作图,轴对称图形:把一个图形沿着某条直线折叠,能够与另一个图形重合;中心对称图形:把一个图形绕着某个点旋转能够和原图形重合.27.(2023·内蒙古通辽·统考中考真题)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片,使与重合,得到折痕,把纸片展平;操作二:在上选一点P,沿折叠,使点A落在正方形内部点M处,把纸片展平,连接、,延长交于点Q,连接. (1)如图1,当点M在上时,___________度;(2)改变点P在上的位置(点P不与点A,D重合)如图2,判断与的数量关系,并说明理由.【答案】(1)30(2),理由见解析【分析】(1)由正方形的性质结合折叠的性质可得出,,进而可求出学科网(北京)股份有限公司 ,即得出;(2)由正方形的性质结合折叠的性质可证,即得出.【详解】(1)解:∵对折正方形纸片,使与重合,得到折痕,∴,.∵在上选一点P,沿折叠,使点A落在正方形内部点M处,∴.在中,,∴.故答案为:.(2)解:结论:,理由如下:∵四边形是正方形,,.由折叠可得:,,,.又,,∴.【点睛】本题主要考查正方形的性质、折叠的性质、解直角三角形、三角形全等的判定和性质、勾股定理等知识点.熟练掌握上述知识并利用数形结合的思想是解题关键.28.(2023·湖北·统考中考真题)如图,将边长为3的正方形沿直线折叠,使点的对应点落在边上(点不与点重合),点落在点处,与交于点,折痕分别与边,交于点,连接. 学科网(北京)股份有限公司 (1)求证:;(2)若,求的长.【答案】(1)证明见解析(2)【分析】(1)由折叠和正方形的性质得到,则,进而证明,再由平行线的性质证明即可证明;(2)如图,延长交于点.证明得到,,设,则,.由,得到.则.由勾股定理建立方程,解方程即可得到.【详解】(1)证明:由翻折和正方形的性质可得,.∴.∴,即,∵四边形是正方形,∴.∴.∴.(2)解:如图,延长交于点.∵,∴.又∵,正方形边长为3,∴∴,∴,,设,则,∴.∵,即,∴.学科网(北京)股份有限公司 ∴.在中,,∴.解得:(舍),.∴. 【点睛】本题主要考查了正方形与折叠问题,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理等等,正确作出辅助线构造相似三角形是解题的关键.29.(2023·江苏无锡·统考中考真题)如图,四边形是边长为的菱形,,点为的中点,为线段上的动点,现将四边形沿翻折得到四边形. (1)当时,求四边形的面积;(2)当点在线段上移动时,设,四边形的面积为,求关于的函数表达式.【答案】(1)(2)学科网(北京)股份有限公司 【分析】(1)连接、,根据菱形的性质以及已知条件可得为等边三角形,根据,可得为等腰直角三角形,则,,根据翻折的性质,可得,,则,;同理,,;进而根据,即可求解;(2)等积法求得,则,根据三角形的面积公式可得,证明,根据相似三角形的性质,得出,根据即可求解.【详解】(1)如图,连接、,四边形为菱形,,,为等边三角形.为中点,,,,.,为等腰直角三角形,,,翻折,,,学科网(北京)股份有限公司 ,;.同理,,,∴;(2)如图,连接、,延长交于点.,,,.∵,,.,则,,,.学科网(北京)股份有限公司 ∵,.【点睛】本题考查了菱形与折叠问题,勾股定理,折叠的性质,相似三角形的性质与判定,熟练掌握菱形的性质以及相似三角形的性质与判定是解题的关键.30.(2023·广东·统考中考真题)综合探究如图1,在矩形中,对角线相交于点,点关于的对称点为,连接交于点,连接. (1)求证:;(2)以点为圆心,为半径作圆.①如图2,与相切,求证:;②如图3,与相切,,求的面积.【答案】(1)见解析(2)①见解析;②【分析】(1)由点关于的对称点为可知点E是的中点,,从而得到是的中位线,继而得到,从而证明;(2)①过点O作于点F,延长交于点G,先证明得到,由与相切,得到,继而得到,从而证明是的角平分线,即,,求得,利用直角三角形两锐角互余得到,从而得到,即,最后利用含度角的直角三角形的性质得出;②先证明四边形是正方形,得到,再利用是的中位线得到学科网(北京)股份有限公司 ,从而得到,,再利用平行线的性质得到,从而证明是等腰直角三角形,,设,求得,在中,即,解得,从而得到的面积为.【详解】(1)∵点关于的对称点为,∴点E是的中点,,又∵四边形是矩形,∴O是的中点,∴是的中位线,∴∴,∴(2)①过点O作于点F,延长交于点G,则, ∵四边形是矩形,∴,,∴,.∵,,,∴,∴.∵与相切,为半径,,∴,∴又∵即,,∴是的角平分线,即,学科网(北京)股份有限公司 设,则,又∵∴∴又∵,即是直角三角形,∴,即解得:,∴,即,在中,,,∴,∴;②过点O作于点H, ∵与相切,∴,∵∴四边形是矩形,又∵,∴四边形是正方形,∴,又∵是的中位线,∴∴∴学科网(北京)股份有限公司 又∵,∴又∵,∴又∵,∴是等腰直角三角形,,设,则∴在中,,即∴∴的面积为:【点睛】本题考查矩形的性质,圆的切线的性质,含度角的直角三角形的性质,等腰直角三角形的性质与判定,中位线的性质定理,角平分线的判定定理等知识,掌握相关知识并正确作出辅助线是解题的关键.学科网(北京)股份有限公司
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023中考数学真题分项汇报1实数的有关概念与计算(53题)(解析版)
2023中考数学真题分项汇报2整式及其运算(解析版)
2023中考数学真题分项汇报3因式分解(解析版)
2023中考数学真题分项汇报5二次根式(解析版)
2023中考数学真题分项汇报11反比例函数及其应用(共65题)(解析版)
2023中考数学真题分项汇报12二次函数图象性质与应用(共55题)(解析版)
2023中考数学真题分项汇报13二次函数解答压轴题(共62题)(解析版)
2023中考数学真题分项汇报14几何图形初步与三视图、相交线与平行线(共84题)(解析版)
2023中考数学真题分项汇报15三角形及全等三角形(共30题)(解析版)
2023中考数学真题分项汇报18矩形菱形正方形(共39题)(解析版)
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-08-08 00:27:01
页数:44
价格:¥20
大小:3.40 MB
文章作者:xmxhq
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划