首页

初中数学第六章一次函数6.1函数2教案(苏科版八上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

6.1函数(2)教学目标【知识与能力】能结合实例,了解函数的三种表示方法,能确定简单实际问题中函数的自变量取值范围,会求出函数值.【过程与方法】能用适当方法刻画某些实际问题中的函数关系,并能利用函数的图像分析简单实际问题中变量间的关系,提高识图能力【情感态度价值观】体会数形结合思想教学重难点【教学重点】函数的三种表示方法[【教学难点】会求自变量的取值范围课前准备无教学过程一、新课导入汽车以100km/h的速度匀速行驶,在这一变化过程中,1.有哪些变量?哪些常量?2.变量之间是函数关系吗?3.若汽车行驶的时间为t(h),汽车行驶的路程为y(km).怎样表示函数y与自变量t的关系?二、探索学习(1)可以列表表示.(2)可以列式表示.像y=100t、S=8+6(n-1)表示两个变量之间关系的式子称为函数表达式.例1 汽车油箱内存油40L,每行驶100km耗油10L.(1)求行驶过程中油箱内余油量Q(L)与行驶路程s(km)的函数表达式.(2)汽车行驶250km时,油箱里还有多少油?(3)你认为这辆汽车现有油量够它行驶多远?(4)s的值最小取多少?s的取值范围是什么?注意:在实际问题中,自变量的取值通常有一定的范围.练习应用:商店有100支铅笔.(1)如果卖出x支,还剩y支,那么y=   ;(2)当x越来越大时,y会发生什么变化?(3)请写出自变量取值范围     .函数关系的表达除了上述两种形式还可以用图像呈现:在太阳和月球引力的影响下,海水定时涨落的现象称为潮汐,涨落的水位称为潮位.如图是我国某港某天的实时潮位图.(1)在图中你读到了什么信息?(2)在图中,潮位仪绘制的平滑曲线,揭示了潮位y(m)与时间t(h)之间的函数关系.-2- 像这样,在直角坐标系中,以函数的自变量的值为横坐标、相应的函数值为纵坐标的点,所组成的图形叫做这个函数的图像.在汽车以100km/h的速度匀速行驶,这一变化过程中,我们得到表格:t/h1234…y/km10200300400…在表格中,我们得到了y与t的一些对应数值,在平面直角坐标系中描出点(1,100)、(2,200)、(3,300)、(4,400),进而画出表示y与t的关系的图形.从函数的图像中直观的呈现出函数y随自变量t变化的趋势.三、例题讲解例2 小明骑自行车从甲地到乙地,图中的折线表示小明的行程s(km)与途中所花时间t(h)之间的函数关系.试根据函数图像回答下列问题:(1)小明从甲地到乙地用了多少时间?(2)小明出发5h时,距离甲地有多远?(3)折线中有一条平行于t轴的线段,它的意义是什么?(4)你还能从图中获得哪些信息?请与同伴交流.练习:甲、乙两人出去散步,用20min走了900m后,甲随即按原速返回.乙遇到一位朋友,并与朋友交谈了10min后,用15min时间回到家里.下面4个图像中,哪一个表示甲离家的路程s(m)与时间t(min)的函数关系?哪一个表示乙离家的路程与时间之间的函数关系?四、课题小结本节课我们学习了:(1)函数关系的三种表达方法,各种方法都有什么特点?(2)自变量取值范围的确定以及函数值的求法.-2-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-04 04:36:02 页数:2
价格:¥1 大小:115.97 KB
文章作者:随遇而安

推荐特供

MORE