首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
沪科版(2012)
>
八年级下册
>
第19章 四边形
>
19.2 平行四边形
>
第19章四边形19.2第3课时平行四边形的判定课件
第19章四边形19.2第3课时平行四边形的判定课件
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/36
2
/36
3
/36
4
/36
剩余32页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
19.2平行四边形第19章四边形第3课时平行四边形的判定 平行四边形的性质边平行四边形的对边平行平行四边形的对边相等角平行四边形的对角相等平行四边形的邻角互补平行四边形的对角线互相平分对角线知识回顾 学习了平行四边形之后,小明回家用细木棒钉制了一个平行四边形.第二天,小明拿着自己动手做的平行四边形向同学们展示.小辉却问:你凭什么确定这四边形就是平行四边形呢?大家都困惑了…… 活动1:将两根同样长的木条AD,BC平行放置,再用木条AB,DC加固,得到的四边形ABCD是平行四边形.ABCD猜想:一组对边平行且相等的四边形是平行四边形.平行四边形的判定定理1 连接AC.∵AB∥CD,∴∠1=∠2.又AB=CD,AC=CA,∴△ABC≌△CDA(SAS).∴∠3=∠4.∴AD∥BC.∴四边形ABCD是平行四边形.BADC已知:如图,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.证明:1234 一组对边平行且相等的四边形是平行四边形.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形.几何语言:平行四边形判定定理1BDCA总结归纳 例1如图,在平行四边形ABCD中,已知AE,CF分别是∠DAB,∠BCD的平分线,求证:四边形AFCE是平行四边形.证明:在□ABCD中,∠B=∠D,AB=CD,∠DAB=∠BCD.∵AE,CF分别是∠DAB,∠BCD的平分线,∴∠BAE=∠DCF=∠DAB=∠BCD.∴△ABE≌△CDF(ASA). 例1如图,在平行四边形ABCD中,已知AE,CF分别是∠DAB,∠BCD的平分线,求证:四边形AFCE是平行四边形.∴BE=DF.则由BC=DA可得CE=AF.又∵CE∥AF,∴四边形AFCE是平行四边形.(一组对边平行且相等的四边形是平行四边形) 卢师傅要做一个平行四边形木框.他要从下面几根木条中选出四根来制作,可是他不知道该怎样选,请同学们帮他选一选,并说明是为什么.7cm4cm3cm3cm5cm4cm阅读思考 4cm4cm4cm4cm3cm3cm3cm3cm发现:一组对边平行,另一组对边相等,或两组边分别相等的四边形都不一定是平行四边形.4cm5cm3cm3cm 活动2:用两根长30cm的木条和两根长20cm的木条作为四边形的四条边,能否拼成一个平行四边形?与同伴进行交流.20cm30cm猜测:两组对边分别相等的四边形是平行四边形.平行四边形的判定定理2 已知:四边形ABCD中,AB=CD,AD=CB.求证:四边形ABCD是平行四边形.ABCD连接BD.在△ABD和△CDB中,AB=CD,BD=DB,AD=CB,∴△ABD≌△CDB(SSS).∴∠1=∠3,∠2=∠4.∴AB∥CD,AD∥CB.∴四边形ABCD是平行四边形.证明:1423 两组对边分别相等的四边形是平行四边形.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.几何语言:平行四边形判定定理2总结归纳BDCA 例2如图,在平行四边形ABCD中,E,F分别是边BC和AD上的两点,且AF=CE.求证:四边形AECF为平行四边形.BACDFE证明:易得△ABE≌△CDF(SAS).∴AE=CF.又∵AF=CE,∴四边形ABCD是平行四边形.(两组对边分别相等的四边形是平行四边形) 将两根木条AC,BD的中点重叠,并用钉子固定,再用一根橡皮筋绕端点A,B,C,D围成一个四边形.想一想,△AOB与△COD全等吗?四边形ABCD的对边之间有什么关系?你得到什么结论?ACBOD合作探究猜想:对角线互相平分的四边形是平行四边形.平行四边形的判定定理3 已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC,(已知)OB=OD,(已知)∠AOB=∠COD,(对顶角相等)∴△AOB≌△COD(SAS).∴AB=CD,∠ABO=∠CDO.∴AB∥CD.∴四边形ABCD是平行四边形.ACBOD 对角线互相平分的四边形是平行四边形.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.几何语言:平行四边形判定定理3总结归纳ACBOD 1.请你判断下列四边形中哪些是平行四边形:⑷ADCB110°70°110°⑶⑴ABCDO5㎝5㎝4㎝4㎝4.8㎝BADC4.8㎝7.6㎝7.6㎝ABCD120°60°⑵5cm5cm练一练(((((√√√√ 2.已知:E、F是平行四边形ABCD对角线AC上的两点,对角线BD、AC于点O,并且OE=OF.求证:四边形BFDE是平行四边形.证明:∵四边形ABCD是平行四边形,∴OB=OD.又∵OE=OF,∴四边形BFDE是平行四边形.DOABCEF 例3已知:E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.OBACEFD证明:连接BD.在平行四边形ABCD中,OA=OC,OB=OD.∵AE=CF,∴OA-AE=OC-CF,即EO=FO.又∵BO=DO,∴四边形BFDE是平行四边形.(对角线互相平分的四边形是平行四边形) 例4填空:如图,在四边形ABCD中,(1)若AB∥CD,则补充条件,可使四边形ABCD为平行四边形;(2)若AB=CD,则补充条件,可使四边形ABCD为平行四边形;(3)若对角线AC,BD交于点O,OA=OC=3,OB=5,则补充条件,可使四边形ABCD为平行四边形.AD∥BCAD=BCOD=5BODAC (4)如图,□ABCD的对角线AC,BD相交于点O,E,F是AC上的两点,则补充条件,可使四边形BFDE为平行四边形.试证明.BODACEF证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,∴OA-AE=OC-CF,即OE=OF.又OB=OD.∴四边形BFDE是平行四边形.AE=CF想想还有其他证法吗? 思考:我们可以从对角的关系出发来判定一个四边形是否为平行四边形吗?ABCD你能根据平行四边形的定义证明它们吗? 已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.ABCD且∠A=∠C,∠B=∠D,∵∠A+∠C+∠B+∠D=360°,∴2∠A+2∠B=360°,即∠A+∠B=180°.∴AD∥BC.∴四边形ABCD是平行四边形.同理得AB∥CD,证明:判定方法:两组对角分别相等的四边形是平行四边形 想一想:判定一个四边形是平行边形可以从哪些角度思考?具体有哪些方法?从边考虑两组对边分别平行(定义法)两组对边分别相等(判定定理2)一组对边平行且相等(判定定理1)从角考虑从对角线考虑平行四边形的判定法两组对角分别相等(定义拓展)对角线互相平分(判定定理3) 小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?说说你的理由.ABCDOFE试一试解:有6个平行四边形,分别是:□ABOF,□ABCO,□BCDO,□CDEO,□DEFO,□EFAO. 1.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A.1:2:3:4B.1:4:2:3C.1:2:2:1D.3:2:3:2D2.如图所示,△ABC是等边三角形,P是其内任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为24,则PD+PE+PF=.AFBDCEP83.已知AD∥BC,要使这个四边形ABCD为平行四边形,需要增加条件__________________.AD=BC或AB∥CD 4.已知:如图,E,F分别是平行四边形ABCD的边AD,BC的中点.求证:BE=DF.DFECBA证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵E,F分别是AD,BC的中点,∴ED=BF,即EDBF.∥=∴四边形EBFD是平行四边形(一组对边平行且相等的四边形是平行四边形).∴BE=DF(平行四边形的对边分别相等). 5.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.解:四边形ABFC是平行四边形.证明如下:∵AB∥CD,∴∠BAE=∠CFE.∵E是BC的中点,∴BE=CE.又∵∠AEB=∠FEC,∴△ABE≌△FCE(AAS).∴AE=FE.∴四边形ABFC是平行四边形. 7.现有一块等腰直角三角形铁板,要求切割一次,焊接成一个含有45°角的平行四边形(不能有余料),请你设计一种方案,并说明该方案正确的理由.能力提升ABC CABFED DCABE ABCFDE 8.老陈有一块平行四边形菜园地,夏季到来了,院子里瓜果飘香.有一天突然下起了暴雨,将菜园地的一部分冲垮,老陈的菜园地与邻居家的菜园地之间的界限看不清了,巧的是,刚好保留了顶点A和C.(1)如图,若你只有一把直尺和一个圆规,你能将图形补全吗?若能,请补全图形(不写作法,只保留作图痕迹),并证明四边形ABCD是平行四边形.ABC (2)若E是BC边上的一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE,①作出满足题意的点F,简要说明作图过程.②依据你的作图,证明:DF=BE.ABCEABCDOF 从边考虑两组对边分别平行(定义法)两组对边分别相等(判定定理2)一组对边平行且相等(判定定理1)从角考虑从对角线考虑平行四边形的判定方法两组对角分别相等(定义拓展)对角线互相平分(判定定理3)
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
18.2平行四边形的判定第3课时平行四边形性质和判定的综合运用课件(华师大版八下)
19.2平行四边形第3课时平行四边形边的判定课件(沪科版八下)
19.2平行四边形第3课时平行四边形的判定教案(沪科版八下)
19.2平行四边形第3课时平行四边形的判定学案(沪科版八下)
18.1.2 第1课时 平行四边形的判定(1)课件
18.1.2 第2课时 平行四边形的判定(2)课件
沪科版数学八年级下册 19.2 第3课时 平行四边形的判定 课件
第19章四边形19.2第3课时平行四边形的判定教案
第19章四边形19.2第1课时平行四边形边和角的性质课件
第19章四边形19.2第2课时平行四边形对角线的性质课件
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-06-14 22:54:01
页数:36
价格:¥3
大小:4.68 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划