首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
浙江省温州市环大罗山联盟2021-2022学年高一数学下学期期中联考试题(Word版附解析)
浙江省温州市环大罗山联盟2021-2022学年高一数学下学期期中联考试题(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/20
2
/20
剩余18页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2021学年第二学期温州环大罗山联盟期中联考高一年级数学学科试题第Ⅰ卷(选择题部分)一、单选题(本题共8小题,每小题5分,共40分)1.若向量,,则的坐标为()A.B.C.D.【答案】C【解析】【分析】直接进行向量的减法即可.【详解】因为向量,,所以.故选:C2.已知角以坐标原点为顶点,以轴的非负半轴为始边,终边经过点,且,则实数的值是()A.2B.C.D.【答案】A【解析】【分析】根据三角函数的定义求解即可.【详解】由题意有,解得或,由于,则,所以满足题意.故选:A3.将函数向右平移个单位长度,所得图象的函数解析式为() A.B.C.D.【答案】D【解析】【分析】利用三角函数平移变换求解.【详解】函数向右平移个单位长度,.故选:D.4.已知一张边长为2的正方形纸片绕着它的一条边所在的直线旋转弧度,则该纸片扫过的区域形成的几何体的表面积为()A.B.C.D.【答案】C【解析】【分析】根据旋转体的定义可知该几何体为圆柱的八分之一,求其表面积即可.【详解】因为一个边长为2的正方形纸片绕着一条边旋转弧度,所形成的几何体为柱体的一部分,是底面半径r为2,高h为2的圆柱的八分之一,所以其表面积,故选:C5.已知函数是定义在上的偶函数,当时,,则不等式的解集为()A.B.C.D.【答案】A【解析】 【分析】判断函数在上单调性,再结合偶函数的性质解不等式作答.【详解】当时,,则在上单调递增,又函数是上的偶函数,且,因此,,解得,所以不等式的解集为.故选:A6.在中,为边上一点,,,,则的值为()A.B.C.D.【答案】C【解析】【分析】由正弦定理求得,继而求出,再根据三角形外角定理,结合两角和的正弦公式,求得答案.【详解】如图示:在中,由正弦定理得:,故,而,故只能是锐角,故, 所以,故选:C7.如图,平面内有三个向量,,,与夹角为120°,,的夹角为150°,且,,若,则()A.B.C.D.9【答案】B【解析】【分析】作的相反向量,再以射线,为邻边,以为对角线作,根据向量加法求解即可.【详解】作的相反向量,再以射线,为邻边,以为对角线作, 因为与的夹角为120°,,的夹角为150°,且,,所以,所以,,所以,所以,即即.故选:B8.设函数,若关于x的方程有四个实根,则的最小值为()A.B.C.10D.9【答案】D【解析】【分析】作函数的大致图象,可知,由与的图象有四个交点可得,计算求得的值即可得的范围,根据可得与的关系,再根据基本不等式计算的最小值即可求解.【详解】作函数的大致图象,如图所示: 当时,对称轴为,所以,关于的方程有四个实根,则,由,得或,则,又,所以,所以,所以,且,所以,当且仅当,即时,等号成立,故的最小值为.故选:D.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、多选题(本题共4小题,每小题题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知是虚数单位,是复数,且,则下列说法正确的是()A.在复平面上对应的点位于第一象限B.在复平面上对应的点位于第二象限C.D.【答案】BD【解析】【分析】根据复数的乘除运算求出,利用复数的几何意义可判断A、B;利用复数模的求法可判断C、D.【详解】由,则,所以在复平面上对应的点为,即在复平面上对应的点位于第二象限.所以.故选:BD10.给出以下关于斜二测直观图的结论,其中正确的是()A.水平放置的角的直观图一定是角B.相等的角在直观图中仍然相等C.相等的线段在直观图中仍然相等D.两条平行线段在直观图中仍是平行线段【答案】AD【解析】【分析】根据直观图和斜二测画法的规则,判断选项. 【详解】水平放置的角的直观图一定是角,故A正确;角的大小在直观图中都会发生改变,有的线段在直观图中也会改变,比如正方形的直方图中,故BC错误;由斜二测画法规则可知,直观图保持线段的平行性,所以D正确.故选:AD11.已知向量,,且向量满足,则()A.B.C.向量与的夹角为D.向量在方向上的投影向量为【答案】ACD【解析】【分析】由得,,进而依次讨论各选项即可得答案.【详解】由题知,因为,所以,解得或,又因为,所以,所以,对于A选项,,故A选项正确;对于B选项,,由于,所以与不平行,故B选项错误;对于C选项,,,所以,又,所以,故C选项正确;对于D选项,向量在方向上的投影向量为,故D选项正确.故选:ACD12.已知函数的部分图象如图所示,把函数图象上所有点的横坐标伸长为原来的倍,得到函数的图象,则() A.为偶函数B.的最小正周期是C.的图象关于直线对称D.在区间上单调递减【答案】BC【解析】【分析】根据已知条件求出的解析式,在通过三角函数的伸缩变化求出的解析式,结合三角函数的单调性、周期性、对称性、奇偶性即可求出答案.【详解】由图知,,则,即,因为,所以.因为为的零点,则,得.由图知,,则,所以,,从而.由题设,,则为非奇非偶函数,所以A错; 的最小正周期,所以B正确;当时,,则的图象关于直线对称,所以C正确.当时,,不单调,所以D错误.故选:BC.第Ⅱ卷(非选择题部分)三、填空题(本题共4小题,每小题5分,共20分)13.函数的定义域是___________.【答案】【解析】【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得解得,即的定义域是.故答案为:14.已知在中,,则等于________.【答案】【解析】【分析】由正弦定理可得,令,然后利用余弦定理可求出【详解】因在中,,所以正弦定理可得,则令(),由余弦定理得,故答案为: 15.若,,与的夹角为60°,则______.【答案】【解析】【分析】利用平面向量的模长公式和数量积运算进行求解.【详解】由题意,得.故答案为:.16.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是,经过一定时间t(单位:min)后的温度是T,则,其中称为环境温度,h为常数,现有一杯用85℃热水冲的速溶咖啡,放在21℃的房间中,如果咖啡降到37℃需要16min,那么这杯咖啡要从37℃降到25℃,还需要______min.【答案】16【解析】【分析】根据所给函数模型,由Ta=21℃.令T0=85℃,T=37℃,求得,然后令T0=37℃,T=25℃,求得.【详解】由题意知Ta=21℃.令T0=85℃,T=37℃,得,∴h=8.令T0=37℃,T=25℃,则,∴.故答案为:16.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△中,内角所对的边分别是,已知,,.(1)求的值; (2)求△的面积.【答案】(1)(2)【解析】【分析】(1)直接利用余弦定理即可求解;(2)先用同角三角函数关系式求出,再用三角形面积公式求解即可.【小问1详解】由余弦定理可得,即,解得,【小问2详解】∵,且,∴,由得,,∴.故△的面积为.18.如图所示,正方体的棱长为a,过顶点B、D、截下一个三棱锥.(1)求剩余部分体积; (2)求三棱锥的高;(3)4个面都是直角三角形的四面体,被称为鳖臑.你能写出以该正方体的4个顶点为顶点的鳖臑吗?写出一个即可,不需证明.【答案】(1)(2)(3)(答案不唯一)【解析】【分析】(1)根据题意及体积公式直接求解即可;(2)运用等体积法求解即可;(3)根据鳖臑定义,直接写出即可.【小问1详解】设正方体的棱长为,则.【小问2详解】,易知△为等边三角形,且边长为,其面积为,,解得.即三棱锥的高为.【小问3详解】由鳖臑定义可知,三棱锥一个鳖臑.19.已知向量=(1,2),=(-3,k).(1)若∥,求的值;(2)若⊥(+2),求实数k的值; (3)若与的夹角是钝角,求实数k的取值范围.【答案】(1)3;(2)k=;(3)k<且k≠-6.【解析】【分析】(1)解方程1×k-2×=0即得解;(2)解方程1×+2×=0即得解;(3)解不等式1×+2×k<0且k≠-6,即得解.【小问1详解】解:因为向量=(1,2),=(-3,k),且∥,所以1×k-2×=0,解得k=-6,所以==3.【小问2详解】解:因为+2=,且⊥,所以1×+2×=0,解得k=.【小问3详解】解:因为与的夹角是钝角,则<0且与不共线.即1×+2×k<0且k≠-6,所以k<且k≠-6.20.已知向量,,.(1)求函数的单调递增区间和最小正周期;(2)若当时,关于的不等式有解,求实数的取值范围. 【答案】(1)单调增区间为,;;(2).【解析】【分析】(1)利用向量的数量积的坐标运算,并利用两角和差的三角函数公式化简得到函数的解析式,有三角函数的性质求得周期,单调增区间;(2)将不等式分离参数,根据不等式有解的意义得到;然后根据角的范围,利用三角函数的性质求得函数的最小值,进而求得的的取值范围.【详解】(1)因为所以函数的最小正周期;因为函数的单调增区间为,,所以,,解得,,所以函数的单调增区间为,;(2)不等式有解,即;因为,所以,又,故当,即时,取得最小值,且最小值为,所以.21.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.在一般情况下,隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)满足关系式: .研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车道速度是0千米/小时.(1)若车流速度不小于50千米/小时,求车流密度的取值范围;(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).【答案】(1);(2)隧道内车流量的最大值约为3792辆/小时,此时车流密度约为87辆/千米.【解析】【分析】(1)把代入已知式求得,解不等式可得的范围.(2)由(1)求得函数,分别利用函数的单调性和基本不等式分段求得最大值,比较可得.【详解】(1)由题意知当(辆/千米)时,(千米/小时),代入,得,解得,所以当时,,符合题意;当时,令,解得,所以.综上,.答:若车流速度不小于50千米/小时,则车流密度的取值范围是.(2)由题意得,当时,为增函数,所以,等号当且仅当成立;当时, .即,等号当且仅当,即,即成立.综上,的最大值约为3792,此时约为87.答:隧道内车流量的最大值约为3792辆/小时,此时车流密度约为87辆/千米.【点睛】关键点点睛:本题考查函数模型的应用,对于已经给出函数模型的问题,关键是直接利用函数模型列出方程、不等式或利用函数性质求解,考查学生的逻辑推理与运算能力,属于较难题.22.已知函数.(1)判断函数的奇偶性,并说明理由;指出单调性,不需证明;(2)函数,若存在,使得成立,求实数a的取值范围;(3)若函数,讨论函数的零点个数.【答案】(1)奇函数,证明见解析,上单调递减.(2)(3)答案见解析.【解析】【分析】(1)先由函数解析式求出函数定义域,判断其奇偶性及单调性即可;(2)根据题中,先得到和在上的值域的交集不为空集;分别讨论和两种情况,分别求出两函数的值域,根据交集不为空集,列出不等式求解,即可得出结果;(3)利用已知条件令,则,画出的图象,观察图像, 分情况讨论即可得出结果.【小问1详解】函数,由,可得,即的定义域为;又,所以为奇函数,当时,显然单调递减,所以在上单调递减.【小问2详解】函数,若存在,使得成立,则和在上的值域的交集不为空集;由(1)可知:时,显然单调递减,所以其值域为;若,则在上单调递减,所以的值域为,此时只需,即,所以;若,则在递增,可得的值域为,此时与的交集显然为空集,不满足题意;综上,实数的范围是;【小问3详解】由,得,令,则,画出的图象, ①当,或,所以只有一个满足,即,解得,由得,当即时,有3个交点,即有3个零点,当即时,有1个交点,即有1个零点.②当时,显然只有1解,且,此时,只有1解,即有1个零点③当时,,只有1解,且,所以此时只有1解,即只有1个零点.④当时,,此时,,,由,得在,,三个分别对应一个零点,共个,在时,,三个分别对应个,1个,个零点,共个,综上所述:当或或时,只有个零点,当或时,有个零点,当时,有个零点. 【点睛】关键点睛:本题考查了函数的定义域和奇偶性,方程根的存在性以及个数判断.把函数的零点问题转化为两个函数的交点问题,画出函数图像分析是解决本题的关键.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
浙江省温州市环大罗山联盟2022-2023学年高一数学上学期期中联考试卷(Word版有解析)
浙江省温州市环大罗山联盟2022-2023学年高二英语上学期期中联考试卷(Word版有解析)
浙江省温州市环大罗山联盟2022-2023学年高一政治上学期期中联考试卷(Word版有答案)
浙江省温州市环大罗山联盟2022-2023学年高二历史上学期期中联考试卷(Word版有解析)
浙江省环大罗山联盟2022-2023学年高二政治上学期期中联考试题(Word版含解析)
浙江省环大罗山联盟2022-2023学年高二生物上学期期中联考试题(Word版含解析)
浙江省环大罗山联盟2022-2023学年高二语文上学期期中联考试卷(Word版附解析)
浙江省温州市环大罗山联盟2022-2023学年高一政治上学期期中联考试卷(Word版附解析)
浙江省温州市环大罗山联盟2021-2022学年高一语文下学期期中联考试题(Word版附解析)
浙江省温州市环大罗山联盟2021-2022学年高二语文下学期期中联考试题(Word版附解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-04-14 06:06:02
页数:20
价格:¥2
大小:1.17 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划