首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
河南省 2022-2023学年高二数学下学期第一次段考试题(Word版附答案)
河南省 2022-2023学年高二数学下学期第一次段考试题(Word版附答案)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/10
2
/10
剩余8页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2024届高二年级下学期第一次段考数学试卷一、选择题:(本大题共12小题,每小题5分)1.已知等差数列的前n项和为,若,,则公差为()A.-3B.-1C.1D.32.英国著名数学家布鲁克-泰勒以微积分学中将函数展开成无穷级数的定理著称于世.在数学中,泰勒级数用无限连加式来表示一个函数,泰勒提出了适用于所有函数的泰勒级数,并建立了如下指数函数公式:,其中,,,则的近似值为(精确到0.01)()A.1.63B.1.64C.1.65D.1.663.已知等差数列的前n项和为满足,,则数列的前8项和为()A.B.C.D.4.在等比数列中,,公比,且,又与的等比中项为2,,数列的前n项和为,则当最大时,n的值等于()A.8B.8或9C.16或17D.175.定义在R上的函数满足,且,是的导函数,则不等式(其中e为自然对数的底数)的解集为()A.B.C.D.6.已知等差数列的前n项和为,,,则当取得最小值时,n的值为()A.5B.6C.7D.8 7.给出定义:设是函数的导函数,是函数的导函数,若方程有实数解,则称为函数的“拐点”.经研究发现所有的三次函数都有“拐点”,且该“拐点”也是函数的图像的对称中心.若函数,则()A.-8080B.-8082C.8084D.80888.已知数列中,,,则数列的前n项和()A.B.C.D.9.设有三个不同的零点,则a的取值范围是()A.B.C.D.10.已知a,b为正实数,直线与曲线相切,则的取值范围是()A.B.C.D.11.已知函数,,若成立,则的最小值为()A.B.C.D.12.关于函数,下列说法错误的是()A.是的极小值点 B.函数有且只有1个零点C.存在正实数k,使得恒成立D.对任意两个正实数,,且,若,则二、填空题:本大题共4小题,每小题5分.13.若各项均为正数的数列中,,前n项和为,对于任意的正整数n满足,则数列的通项公式______.14.在等差数列中,若,则______.15.已知函数,(e是自然对数的底数),对任意的,存在,有,则a的取值范围为______.16.已知函数,若关于x的方程有3个不同的实数根,则a的取值范围为______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数.(1)求曲线在点处的切线方程;(2)求函数在区间上的最大值与最小值.18.(本小题满分12分)已知数列的前n项和.(1)求的通项公式;(2)求数列的前n项和.19.(本小题满分12分)已知函数,.(1)求函数的值域; (2)设,当时,函数有两个零点,求实数k的取值范围.20.(本小题满分12分)如图,AB是过抛物线焦点F的弦,M是AB的中点,l是抛物线的准线,,N为垂足,点N坐标为.(1)求抛物线的方程;(2)求的面积(O为坐标系原点).21.(本小题满分12分)如图,在四棱锥中,四边形ABCD是边长为4的正方形,平面平面ABCD,,.(1)求证:平面CDP;(2)若点E在线段AC上,直线PE与直线DC所成的角为,求平面PDE与平面PAC夹角的余弦值.22.(本小题满分12分)已知函数,.(1)若在上单调递增,求实数a的取值范围;(2)若恒成立,求实数a的取值范围.2024届高二年级下学期第一次段考数学答案 题号123456789101112答案BCBBACBBDCDC13.14.515.16.17.(1),∴,又,∴曲线在点处的切线方程为,即(2),令,解得或,又∴当x变化时,,的变化情况如下表所示:x-110-0++1单调递减单调递增1∴在区间上的最大值是1,最小值是.18.(1)当时,,即,当时,,时,,与不符,所以;(2)由得,而,所以当时,,当时,,当时,,当时, ,所以19.(1)由可知令则,x-1-0+减极小值增所以,无最大值,所以的值域为.(2)当时,,令,则有两个零点等价于有两个零点,对函数求导得:,当时,在上恒成立,于是在上单调递增.所以,因此在上没有零点即在上没有零点,不符合题意当时,令得,在上,在上所以在上单调递减,在上单调递增所以的最小值为由于在上有两个零点,所以,因为,, 对于函数,,所以在区间上,函数单调递减;在区间,,函数单调递增;所以所以所以由零点存在性定理得时,在上有两个零点,综上,可得k的取值范围是.20.解:(1)点,在准线l上,所以准线l方程为:,则,解得所以抛物线的方程为:.(2)设,,由A、B在抛物线上,所以,则,又,可知点M纵坐标为-3,M是AB的中点,所以,所以,又知焦点F坐标为,则直线AB的方程为:联立抛物线的方程,可得,解法1:直接解得或,所以;所以.解法2:由韦达定理得.所以.21.【解析】(1)∵四边形ABCD为正方形,∴,又平面平面ABCD,平面平面,平面ABCD,∴平面ADP,又平面ADP,∴,∴,.∴,∴;∵,∴,又,PD,平面CDP,∴平面 CDP.(2)作,垂足为O,作,交BC于F,∵平面平面ABCD,平面平面,平面ADP,∴平面ABCD,由(1)知:,,,∴,∴,,∴,以O为坐标原点,,,正方向为x,y,z轴,可建立如图所示空间直角坐标系,则,,,,∴,,,,设,则,∴,∴,解:,∴,设平面PDE的法向量,则,令,解得:,,∴;设平面PAC的法向量,则,令,解得:即平面PDE与平面PAC夹角的余弦值为.22.(1),因为在上单调递增, 所以,恒成立,即恒成立,因为在上单调递减,所以,则.故实数a的取值范围为;(2)因为恒成立,所以恒成立,设,,则,设,,则,所以在上单调递减,且,,则,使,即,且,,列表得x+0-极大值所以,则.解法二:恒成立,即恒成立,令,,则,所以在上单调递增,因为时,,所以在上的值域为. 因为,所以,恒成立,设,,则,令得,列表得t1+0-极大值所以,则.解法三:恒成立,即恒成立,令,,则在上单调递增,的值域为R.因为,所以,恒成立,设,,则,令得,列表得t0+0-极大值所以,则.故实数a的取值范围是.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
河南省名校联盟2022-2023学年高二化学上学期阶段测试(一)试题(Word版附答案)
河南省创新联盟2022-2023学年高二政治上学期第一次联考试题(B卷)(Word版附答案)
河南省商丘2022-2023学年高二数学下学期第一次联考试题(Word版附解析)
河南省商丘名校2022-2023学年高二数学下学期第一次联考试题(开学考试)(Word版附解析)
河南省商丘名校2022-2023学年高二物理下学期第一次联考试题(开学考试)(Word版附解析)
河南省信阳高级中学2022-2023学年高二物理下学期开学考试试题(Word版附解析)
河南省商丘名校2022-2023学年高二化学下学期第一次联考试题(开学考试)(Word版附解析)
河南省商丘名校2022-2023学年高二历史下学期第一次联考试题(开学考试)(Word版附解析)
河南省商丘名校2022-2023学年高二生物下学期第一次联考试题(开学考试)(Word版附解析)
河南省 2022-2023学年高二英语下学期第一次段考试题(Word版附解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-03-19 16:50:02
页数:10
价格:¥2
大小:661.21 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划