首页

青岛版八年级下册教案6.4 三角形的中位线定理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

6.4三角形的中位线教学目标【知识与能力】(1)理解三角形中位线的概念。(2)会证明三角形的中位线定理。(3)能应用三角形中位线定理解决相关的问题。【过程与方法】进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。【情感态度价值观】通过拼图活动,来激发学生的求知欲,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。教学重难点【教学重点】理解并应用三角形中位线定理。【教学难点】三角形中位线定理的证明和运用。课前准备无教学过程本节课分为五个环节:设景激趣,引入新课概念学习,感悟新知拼图活动,探索定理巩固练习,强化新知小结归纳,作业布置(一)设景激趣,导入新课假山为了测量广场上的小假山外围圆形的宽(不能直接测量)在平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出宽BC。你知道这是为什么吗?BACDE设计意图:问题是一切学习探究的先父,教材中创设的问题情境难度较大,学生不容易突破。这里创设了一个现实情景,在这里教师不急于让学生找出答案,而是让学生带着问题去学习。为了让学生主动的获得新知,先让学生动手做以下一个环节的动手操作活动。(二)概念学习(引导探究,获得新知) 1、动手实践探索请您做一做(让学生拿出自己预先准备好的三角形纸板):1、找出三边的中点2、连接6点中的任意两点3、找找哪些线是你已经学过的,哪些是未曾学过的ACBFED设计意图:在本环节,让学生经过动手操作,学生会发现有3条是已经学过的中线,有3条是没有学过的。最终给出三角形中位线的定义。也引出了本节课的课题:三角形的中位线。这样做,既让学生得出三角形中位线的概念又让学生在无形中区分了三角形的中线和三角形中位线2、三角形中位线的定义:连接三角形两边中点的线段,叫做三角形的中位线.如图,DE、EF、DF是三角形的3条中位线。CBAFED跟踪训练:①如果D、E分别为AB、AC的中点,那么DE为△ABC的;②如果DE为△ABC的中位线,那么D、E分别为AB、AC的。CBED设计意图:学以致用,为了及时的使学生加深三角形中位线的概念印象,为后面的探究打下基础,设立了以上两道简单的抢答题,让学生学会及时的从图中找出信息。(三)拼图活动、探索定理(用时大概5分钟)整个的拼图游戏我设计了以下两个问题: 问题一:将一张三角形纸片沿着中位线DE剪成两部分,得到△ADE和四边形BCED.将△ADE按照下图方式放置,使点A与C重合,AE与CE重合,你拼出了一个什么图形?说明你的理由.ABCDEF问题二:猜想得出平行四边形后,简述证明过程。设计意图:这个时候学生会拿出自己已经准备好的三角形纸板进行反复剪拼,并交流。这样处理教材是为了分散难点,中位线定理证明对于学生来说有一定的难度,主要是为后面猜想三角形中位线定理并证明定理而作下铺垫的,这里体现了新的知识是建立在学生已有认识的基础上。也更大的激发学生动手实践探索的主动性。简述证明过程ACDBFE已知:如图,DE是△ABC的中位线,求证:四边形DBCF是平行四边形证明:如图,∵△ADE≌△CFE∴AD=CF,∠ADE=∠F∴BD∥CF∵AD=BD∴BD=CF∴四边形BCFD是平行四边形建议处理办法:充分交流之后让小组同学上来展示自己的剪拼法,并简述自己的理由乘胜追击,猜想得出定理ACDBFEDE是△ABC的中位线,请想一想:①DE与BC有怎样的位置关系?②DE与BC有怎样的数量关系?为什么?设计意图:(让学生去猜测,去说,去发现,主要还是让学生独立思考,说出自己的猜想)这个时候也许有些学生会通过用尺子量,观察的直观办法得出定理,有些学生可能会通过全等三角形的性质,平行四边形的性质去理性得出定理的办法。这个时候教师要给予学生一个充分的交流和探索时间。学生通过合作学习,彼此互相启发,共同研究,能够自己解决这一问题。从而猜想得出三角形的中位线定理,并为定理的证明打下基础。引导得出定理如下:三角形中位线定理:三角形的中位线平行于第三边(位置关系),并且等于第三边的一半(数量关系)。 活动效果:注意:引导学生去欣赏数学的简洁美,引导学生用简单的符号、图形语言去表达深刻的定理。验证、明确结论BCADEF证法:延长DE至F,使EF=DE,连接CF∵AE=CE,∠AED=∠CEF,∴△ADE≌△CFE∴AD=CF,∠ADE=∠F∴BD∥CF∵AD=BD∴BD=CF∴四边形BCFD是平行四边形∴DF∥BC,DF=BC∴DE∥BC,DE=BC活动效果:有了前面的交流活动,学生要证明三角形的中位线定理思路就清晰多了,只是这时候后怎样做辅助线又是学生学习的一个难点。这时候,不要生硬的将辅助线直接做出来让学生接受,而是采取启发的办法:要证明一条线段长度等于另一条线段的长的一半,可将较短的线段延长一倍,或者截取较长线段的一半等。有了前面开拓思路的交流,这个时候,让学生独立写出证明过程。温馨提示:这个时候学生可能有多种证明的方法,教师要对他们的证明方法给以充分的肯定和点拨,增加他们学习数学的信心例1如图,点E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.解:连接AC.在△ABC中,∵点E,F分别是边AB,BC的中点,∴EF∥AC,EF=AC/2(三角形的中位线定理).同理GH∥AC,GH=AC/2∴EF∥GH,且EF=GH.∴四边形EFGH是平行四边形(平行四边形的判定定理1).(四)巩固练习,强化新知1、(练习意图:学生能解答开头提出的疑问,弥合学习的心理“缺口”。在这里让学生体会数学来应用于生活的价值。)BACDE 2、指导应用,鼓励创新随堂练习(1)已知三角形三边长分别为6,8,10,顺次连结各边中点所得的三角形周长是_______;如果△ABC的三边的长分别为a、b、c呢?_______变式训练:(2)三角形的三条中位线围成的三角形的周长为10cm,则原三角形的周长是_____________cm。(亮点2:基于初学者的学习水平,第一题简单而扣紧定理应用;第二题能进一步拓展学生应用能力,提醒学生中位线作为辅助线的作用)设计意图:这道题目主要是利用平行四边形有关定理,三角形的中位线定理来解,既再现了前面的知识,又巩固了新学的知识,让学生感受到知识的连贯性和共性,同时这道题至少有4种证明办法,提高学生的思维能力,达到思维拓展创新的效果。变式训练:1、四边形ABCD是平行四边形时,,四边形EFGH是什么特殊图形?2、四边形ABCD是矩形时,四边形EFGH是什么特殊图形?(五)小结归纳1、本节课你学到了哪些概念定理?2、你学会了这样做辅助线的办法?3、你在和同学的交流学习过程中,有什么感受?

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-03-14 11:25:02 页数:5
价格:¥3 大小:171.84 KB
文章作者:U-344380

推荐特供

MORE