首页

湘教版九下数学1.1二次函数教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

1.1 二次函数1.掌握二次函数的概念,能识别一个函数是不是二次函数;(重点)2.能根据实际情况建立二次函数模型,并确定自变量的取值范围.(难点)                   一、情境导入已知长方形窗户的周长为6米,窗户面积为y(平方米),窗户宽为x(米),你能写出y与x之间的函数关系式吗?它是什么函数呢?二、合作探究探究点一:二次函数的相关概念【类型一】二次函数的识别下列函数哪些是二次函数?(1)y=2-x2;(2)y=;(3)y=2x(1+4x);(4)y=x2-(1+x)2.解析:(1)是二次函数;(2)是分式而不是整式,不符合二次函数的定义,故y=不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;②所表示的函数关系式有唯一的自变量;③所含自变量的关系式中自变量最高次数为2,且函数关系式中二次项系数不等于0.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】根据二次函数的定义求待定字母的值如果函数y=(k+2)xk2-2是y关于x的二次函数,则k的值为多少?解析:紧扣二次函数定义求解,注意易错点为忽视k+2≠0.解:根据题意知解得∴k=2.方法总结:紧扣定义中的两个特征:①二次项系数不为零;②自变量最高次数为2.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型三】与二次函数系数有关的计算已知一个二次函数,当x=0时,y=0;当x=2时,y=;当x=-1时,y=.求这个二次函数中各项系数的和. 解析:解:设二次函数的表达式为y=ax2+bx+c(a≠0).把x=0,y=0;x=2,y=;x=-1,y=分别代入函数表达式,得解得所以这个二次函数的表达式为y=x2.所以a+b+c=+0+0=,即这个二次函数中各项系数的和为.方法总结:涉及有关二次函数表达式的问题,所设的表达式一般是二次函数表达式的一般形式y=ax2+bx+c(a≠0).解决这类问题要根据x,y的对应值,列出关于字母a,b,c的方程(组),然后解方程(组),即可求得a,b,c的值.探究点二:建立简单的二次函数模型一个正方形的边长是12cm,若从中挖去一个长为2xcm,宽为(x+1)cm的小长方形.剩余部分的面积为ycm2.(1)写出y与x之间的函数关系式,并指出y是x的什么函数?(2)当x的值为2或4时,相应的剩余部分的面积是多少?解析:几何图形的面积一般需要画图分析,相关线段必须先用x的代数式表示出来.如图所示.解:(1)y=122-2x(x+1),又∵2x≤12,∴0<x≤6,即y=-2x2-2x+144(0<x≤6),∴y是x的二次函数;(2)当x=2时,y=-2×22-2×2+144=132,当x=4时,y=-2×42-2×4+144=104,∴当x=2或4时,相应的剩余部分的面积分别为132cm2或104cm2.方法总结:二次函数是刻画现实世界变量之间关系的一种常见的数学模型.许多实际问题都可以通过分析题目中变量之间的关系,建立二次函数模型来解决.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计 本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-02-23 10:19:02 页数:3
价格:¥1 大小:737.84 KB
文章作者:随遇而安

推荐特供

MORE