首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
天津市红桥区2022-2023学年高二上学期期末数学试题(Word版含解析)
天津市红桥区2022-2023学年高二上学期期末数学试题(Word版含解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/10
2
/10
剩余8页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
高二数学本试卷分第I卷(选择题)和第I卷(非选择题)两部分,共100分,考试用时90分钟.祝各位考生考试顺利!第I卷1.请将试卷答案写在答题纸上;2.本卷共8题,每题3分,共24分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是等差数列,,,则公差为()A.B.C.D.【答案】B【解析】【分析】根据等差数列通项公式直接求解即可.【详解】,.故选:B.2.已知等比数列的前项和为,公比为,若,则()A.B.C.D.【答案】C【解析】【分析】根据等比数列求和公式直接求解即可.【详解】由等比数列求和公式得:.故选:C.3.若数列的前项和,则下列结论正确的是()A.B.C.D. 【答案】D【解析】【分析】利用与关系,可得答案.【详解】当时,,当时,,经检验,可得.故选:D.4.直线被圆截得的弦长为()A.B.C.D.【答案】B【解析】【分析】根据点到直线距离公式可求得圆心到直线距离,利用垂径定理可求得弦长.【详解】由圆的方程可得:圆心,半径,圆心到直线距离,直线被圆截得的弦长为.故选:B.5.抛物线的准线方程是()A.B.C.D.【答案】D【解析】【分析】根据给定条件,直接写出抛物线准线方程作答.【详解】抛物线的准线方程是.故选:D6.已知是2与8等比中项,则圆锥曲线的离心率等于() A.B.C.或D.或【答案】C【解析】【分析】由等比中项定义求得,根据的取值确定曲线是椭圆还是双曲线,然后计算离心率.【详解】由已知,,当时,方程为,曲线为椭圆,,,离心率为;当时,方程为,曲线为双曲线,,,离心率为.故选:C.7.设抛物线的焦点为,点在上,,若,则()A.B.C.D.【答案】C【解析】【分析】根据抛物线方程可得焦点坐标,进而得到,利用抛物线焦半径公式和抛物线方程可得点坐标,利用两点间距离公式可求得结果.【详解】由抛物线方程得:,则,设,,解得:,,.故选:C.8.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论 的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为,则第六个单音的频率为()AB.C.D.【答案】C【解析】【分析】根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.【详解】因为每一个单音与前一个单音频率比为,所以,故,又,则故选:C.第II卷1.请将试卷答案写在答题纸上;2.本量共76分.二、填空题:本大题共6个小题,每小题4分,共24分9.已知是等比数列,,则公比______.【答案】【解析】【分析】根据等比数列的性质:,即可求出结果.【详解】因为是等比数列,所以,所以.故答案为:.【点睛】本题主要考查了等比数列的性质,数列掌握等比数列性质,是解决本题的关键,属于基础题. 10.若直线过两点,,则此直线的斜率是__________.【答案】【解析】【分析】根据两点连线的斜率公式直接求解即可.【详解】直线斜率.故答案为:.11.以点为圆心,与直线有且只有一个公共点的圆的方程为_________.【答案】【解析】【分析】由直线与圆相切求出半径即可求解【详解】由题意可知以点为圆心的圆与直线相切,所以半径为,所以所求圆的方程为,故答案为:12.双曲线的焦距等于_________.【答案】【解析】【分析】根据双曲线方程可得,由双曲线关系可求得焦距.【详解】由双曲线方程知:,,,则双曲线焦距为.故答案为:.13.椭圆上一点到左焦点的距离为6,则到右焦点的距离为___________.【答案】2 【解析】【分析】根据椭圆的定义即可求解.【详解】由可得,所以,由椭圆的定义可得,所以,故答案为:.14.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________【答案】3【解析】【详解】分析:设塔顶层共有a1盏灯,则数列{an}公比为2的等比数列,利用等比数列前n项和公式能求出结果.详解:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,∴S7==381,解得a1=3.故答案为3.点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力.三、解答题:本大题4个小题,共52分.解答应写出文字说明、证明过程或演算步骤.15.已知直线经过点.(1)若直线与直线垂直,求直线的方程;(2)若的方程是,直线与相切,求直线的方程.【答案】(1)(2)或【解析】【分析】(1)根据直线垂直可设直线方程,求出参数即可.(2)根据直线l的斜率是否存在分为两类,然后利用直线和圆相切的位置关系可知点到直线 的距离等于半径便可求得.【小问1详解】解:由题意得:因为直线l与直线垂直,故设直线l的方程为因为直线l过点,所以,解得.所以直线l的方程为.【小问2详解】的方程化为标准形式是,圆心,半径,当直线l的斜率不存在时,此时直线l的方程为,圆心C到直线l的距离为2,所以直线l与相切,符合题意;当直线l的斜率存在时,设直线l的方程是,即,由直线l与相切,得,解得,所以直线l的方程是,即.综上所述,直线l的方程是或.16.在①;②,;③,.这三个条件中任选一个,补充在下面问题中,然后解答补充完整后的题目.问题:已知为等差数列的前项和,若__________.(1)求数列的通项公式;(2)设,求数列的前项和.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)(2) 【解析】【分析】(1)若选①,利用与关系可推导得到;若选②,利用等差数列通项公式可构造方程求得公差,进而得到;若选③,利用等差数列求和公式可构造方程求得公差,进而利用等差数列通项公式求得;(2)由(1)可得,采用裂项相消法可求得.【小问1详解】若选条件①,当时,;当且时,;经检验:满足;;若选条件②,设等差数列的公差为,则,解得:,;若选条件③,设等差数列的公差为,则,解得:,.小问2详解】由(1)得:,.17.设椭圆的离心率,过点.(1)求椭圆的方程;(2)直线与椭圆交于两点,当时,求的值.(为坐标原点)【答案】(1) (2)【解析】【分析】(1)根据离心率、椭圆的关系和椭圆所过点可构造方程组求得,由此可得椭圆方程;(2)将直线方程与椭圆方程联立可得韦达定理的结论,根据垂直关系可得,利用向量数量积坐标运算和韦达定理结论可构造方程求得结果.【小问1详解】离心率,,,椭圆方程为,又椭圆过点,,解得:,,,椭圆的方程为:.【小问2详解】由得:,则,解得:;设,,,,,,解得:,均满足,.18.若数列满足:,点在函数的图象上,其中为常数, 且.(1)若成等比数列,求的值;(2)当时,求数列的前21项和.【答案】(1);(2).【解析】【分析】(1)根据递推公式,用分别表达,再结合成等比数列,即可求得结果;(2)根据递推公式,求得,再根据分组求和法以及等差数列的前项和公式,即可求得结果.【小问1详解】根据题意可得,又,故可得,又成等比数列,故,即,解得(舍)或,故.【小问2详解】当时,,则,两式作差可得:,故该数列的奇数项是首项为,公差为的等差数列,则,故.故数列的前21项和.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
天津市红桥区2022届高三历史一模试题(Word解析版)
天津市红桥区2022届高三英语一模试题(Word解析版)
天津市部分区2022-2023学年高三语文上学期期中试题(Word版含解析)
天津市红桥区2022-2023学年高三语文上学期期中考试试卷(Word版附解析)
天津市红桥区2022-2023学年高三数学上学期期中考试试卷(Word版附解析)
天津市红桥区2022-2023学年高三历史上学期期中考试试卷(Word版附解析)
天津市红桥区2022-2023学年高三政治上学期期中考试试卷(Word版附解析)
天津市红桥区2022-2023学年高三地理上学期期中考试试卷(Word版附解析)
天津市崇化中学2022-2023学年高一数学上学期期末试题(Word版含解析)
天津市复兴中学2022-2023学年高一数学上学期期末试题(Word版含解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-02-22 10:37:04
页数:10
价格:¥2
大小:433.35 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划