首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
四川省巴中市南江中学2022-2023学年高三数学(文)上学期12月月考试题(Word版含解析)
四川省巴中市南江中学2022-2023学年高三数学(文)上学期12月月考试题(Word版含解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/19
2
/19
剩余17页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022-2023学年高三上学期12月阶段考试数学(文)试题一、选择题;本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,其中为自然对数的底数,则子集的个数为()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】首先判断直线为曲线的切线,再结合集合含义,得出只有一个元素,从而求解.【详解】由题知,,在点处的切线斜率为,则在处的切线方程为.因直线与曲线相切于点,有且只有这一个公共点,故中有且只有一个元素,所以的子集个数为2个.故选:B.2.已知复数z满足,则等于()A.-1B.0C.1D.2【答案】B【解析】【分析】根据复数的除法运算可求得,再结合的周期性运算求解.【详解】由题意可得:,可得:,则故.故选:B.3.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表: 男女总计爱好402060不爱好203050总计6050110由附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”【答案】A【解析】【详解】由,而,故由独立性检验的意义可知选A4.已知双曲线C:的一条渐近线与直线l:垂直,则双曲线C的离心率为()A.2B.3C.4D.5【答案】B【解析】【分析】先由两直线垂直得到渐近线斜率,则根据,即得离心率的值.【详解】与直线l:垂直的双曲线C:的渐近线方程为 ,故,则双曲线的离心率.故选:.5.已知,则的最小值为()A.1B.2C.3D.4【答案】C【解析】【分析】根据对数运算可求得,再用基本不等式即可求得最小值.【详解】由已知得,.因为,所以.故.当且仅当,即时等号成立.所以,的最小值为3.故选:C.6.等于()A.B.C.-1D.1【答案】B【解析】【分析】先由对数加法运算律得到真数位置相乘,应用二倍角公式,由特殊角三角函数值结合对数运算得到结果.【详解】. 故选:.7.如图,圆柱的底面直径和高都等于球的直径,则球与圆柱的体积之比为()A.B.C.D.【答案】B【解析】【分析】设球的半径为R,根据球与圆柱的体积公式计算即可【详解】设球的半径为R,则圆柱的底面半径为R,高.则球的体积,圆柱的体积,∴.故选:B.8.把棱长为4cm正方体表面涂上红色,再将它分割成棱长为1cm的小正方体,在这些小正方体中随机任取一个,则六个面都没有红颜色的小正方体的概率为()A.B.C.D.【答案】A【解析】【分析】根据总的小立方体的个数64,及没有涂色的小正方体的个数,再根据古典概型得出概率.【详解】由已知,共得到64个小立方体,其中六个面均没有涂红色的小立方体共8个,所求的概率为.故选:9.已知向量,满足,与的夹角为,且实数x、y满足,则的最大值为()A.1B.2C.3D.4 【答案】B【解析】【分析】根据题意结合数量积定义和数量积的运算律整理可得,再利用不等式运算求解.【详解】由题意可得:,∵,则,即,∴,又∵,当且仅当时等号成立,即,整理得:,则,∴当时,的最大值为2.故选:B.10.已知,用表示,中的最大者,记为:.当,,时,函数的最小值为()A.0B.1C.2D.4【答案】B【解析】【分析】由二次不等式的解法结合指数函数单调性求,再根据复合函数单调性判断的单调性,进而确定最值.【详解】若,则;若,则或.∵在R上单调递增,则有:当时,则,即;当或时,则,即; 综上所述:对于,则有:当时,则在R上单调递增,在上单调递减,∴在上单调递减,且,则;当时,则在R上单调递增,在上单调递增,∴在上单调递增,则;当时,则在R上单调递增,在上单调递增,∴在上单调递增,且,则;综上所述:当时,有最小值.故选:B.11.已知实数和满足,.则下列关系式中正确的是()A.B.C.D.【答案】A【解析】【分析】由已知条件指对数转化得到的值,再根据基本不等式得到BCD错误,A正确.【详解】由已知,,故且,,对于A,,故A成立.对于B,,故B错误.对于C,,故C错误.对于D,,故D错误故选:A.12.已知点A为曲线上的动点,点B在圆上,则点A和B的距离最小值为()A.1B.2C.3D.4 【答案】B【解析】【分析】根据题意可求恒成立,圆上点的纵坐标最大为2,则可知图象上的点与圆上点的距离.又图象上存在到圆上点的距离.所以,点A和B的距离最小值为2.【详解】由知,,而,当且仅当,且时,即时取等号.故时,函数的最小值为4.所以图象上的最低点为.圆的方程可化为,圆心为,半径为1,圆的最高点为.所以,上点的纵坐标最小为4,圆上点的纵坐标最大为2,所以,图象上的点与圆上点的距离.又如图取,,此时.所以,点A和B的距离最小值为2.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.若将正整数集中的偶数从小到大排列,它的前n项和为,则的前2023项的和为_____________. 【答案】【解析】【分析】根据等差数列求和公式求得,再利用裂项相消法求和.【详解】由题意可得:,则,故.故答案为:.14.若变量满足则的最大值是____________.【答案】10【解析】【详解】由约束条件作出可行域如图,∵,,∴,联立x+y=22x-3y=9,解得,∵,∴的最大值是10,故答案为10.点睛:本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题;由约束条件作出可行域,然后结合的几何意义,即可行域内的动点与原点距离的平方求得的最大值.15.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:T)和年利润z(单位:千元)的影响.对近10年的年宣传费 和年销售量的数据作了初步处理,得到y关于x的回归方程.且这种产品的年利润z与x、y的关系为;则年宣传费x为_____________时年利润的预报值最大.【答案】46.24(千元)【解析】【分析】利用回归直线方程以及z与x、y的关系即可求解.【详解】由已知,且,故,当,即时,z有最大值66.36.故答案为:46.24(千元)16.已知抛物线C:的焦点为F,点N是抛物线C的对称轴与它的准线的交点,点M是抛物线上的任意一点,则的最大值为_____________.【答案】【解析】【分析】首先利用抛物线定义,将转化为,然后通过三角函数分析,去求抛物线的切线方程,从而求解最小值.【详解】如图所示,过作准线的垂线,垂足记为.由已知得,,根据抛物线的定义知,点M到焦点F的距离等于点M到准线的距离.故.在直角△MNH中,表示的倒数, 故求的最大值转化为求的最小值,此时,也最小值.而的最小值就是曲线在点M处切线过N点时的斜率.由得,故曲线在点处的方程为:.而点在此切线上,故有,则,取,此时切线斜率为:.故切线的倾斜角为45°,即.∴,故所求的最大值为.故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知等比数列的前n项和为,且对,恒成立,,.(1)求数列的通项公式及前n项和;(2)设,求证:.【答案】(1),,();(2)证明见解析.【解析】【分析】(1)根据题意解出、,再利用等比数列通项公式以及求和公式即可.(2)首先求出,再利用裂项相消求和,结合的范围即可证明.【小问1详解】设等比数列的首项为,公比为q,由,,则,故. 由得,解得∴,.()【小问2详解】由(1)可知,,故∵,,则∴.故命题得证.18.已知.(1)求的最小正周期和最大值;(2)在△ABC中,三个内角满足,角A满足,,ABC的面积为,求证:ABC是直角三角形.【答案】(1)最小正周期为,最大值为3;(2)证明见解析.【解析】【分析】(1)由二倍角公式和辅助角公式把函数化简为,应用周期公式和值域性质即可得解.(2)先有结合(1)得到角,再由面积公式计算得到,再应用余弦定理得到,由勾股定理得证.【小问1详解】由已知得 故的最小正周期为,最大值为3.【小问2详解】在ABC中由知:A为锐角,即,且,由知.由知.故,即.,由ABC的面积为,则,故.由余弦定理,得,故,则.∵,,∴,∴∵∴,故ABC是以B为直角的直角三角形.19.已知三棱柱的侧棱与底面边长都相等,为底面的边的中点,且平面.(1)设为上底面的重心,试在平面内作出过点与平面平行的直线,并说明理由;(2)证明:(1)中的直线平面.【答案】(1)答案见解析 (2)证明见解析【解析】【分析】(1)根据线面平行的判定定理分析证明;(2)根据线面垂直的判定定理分析证明.【小问1详解】证明:在平面内,过作与平行的直线,交、于、两点,则平面,理由如下:在三棱柱中,,,则,因为平面,平面,平面.【小问2详解】证明:在底面正三角形中,为的中点,则.∵平面,平面,则.因为,平面,∴平面.又∵,∴平面.20.若的图象过点,且在点P处的切线方程为.(1)求a、b、c的值;(2)设,求证:.【答案】(1),,(2)证明见解析【解析】【分析】(1)求导,根据题意结合导数的几何意义列式运算求解;(2)构建新函数,,利用导数判断原函数单调性及最值证明.【小问1详解】 ,则,由题意可得:,解得.【小问2详解】由(1)可知:,,设,则,∵,令,则,当时,,因此在内为减函数,当时,,因此在内为增函数,故当时,有极小值,也就是的最小值为.∵,可得,∴.设,则,当时,则,,因此在上为减函数,∵,则,即,∴.综上所述:当时,有.【点睛】利用导数证明不等式的基本步骤:(1)作差或变形;(2)构造新的函数h(x);(3)利用导数研究h(x)单调性或最值;(4)根据单调性及最值,得到所证不等式.特别地:当作差或变形构造的新函数不能利用导数求解时,一般转化为分别求左、右两端两 个函数的最值问题.21.已知点E、F的坐标分别为、,直线EP和FP相交于点P,且它们的斜率之积为.(1)求动点P的轨迹C的方程;(2)过定点任作一条与两坐标轴都不垂直的直线与轨迹C相交于A、B两点,求证;在x轴上存在一个定点M,使得MG为的一条内角平分线,并求点M的坐标.(3)设过点M与x轴垂直的直线为l,轨迹C上任一点N到点G的距离与点N到直线l的距离之比是否是定值?若为定值,求出这个定值;若不是定值,说明理由.【答案】(1);(2)证明见解析;;(3)是定值.【解析】【分析】(1)由斜率公式列式求解,(2)由题意得,设出直线方程,与椭圆方程联立后由韦达定理化简后求解,(3)设点坐标,由距离公式与椭圆方程化简求解,【小问1详解】设点,由已知得:,∴,即①故P的轨迹方程为【小问2详解】设过点的直线方程为②把②代入①,整理得:,设,,则、是方程的两实根, 由韦达定理得,,设,由已知直线AM的斜率与直线BM的斜率之和为0,故,即,∴,则.代入得:.故,即.【小问3详解】设在椭圆上,则,则点N到直线:的距离为.点N到的距离为故点N到的距离与点N到直线l:的距离之比为,是定值.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知曲线C:和直线l:(t为参数).(1)求曲线C的参数方程和直线l的普通方程;(2)过曲线C上任意一点P作与直线l夹角为30°的直线,交l于点A,求的最大值与最小值.【答案】(1)曲线C的参数方程为(为参数);直线l的普通方程为; (2)最大值为,最小值为.【解析】【分析】(1)令,即可得到椭圆的参数方程;消去,即可得到直线的普通方程;(2)根据参数方程,表示出点到直线的距离,再表示出,根据辅助角公式,即可求出的最值.【小问1详解】令,可得曲线C的参数方程为(为参数).根据消去可得,直线l的普通方程为.【小问2详解】曲线C上任意一点到直线l:的距离为,其中,且为锐角.过点作,垂足为,则,.在中,,其中,且 为锐角.当时,取得最大值为.当时,取得最小值为.23.(1)已知,若时不等式成立,求a的取值范围;(2)已知,,且,求证:.【答案】(1);(2)证明见解析.【解析】【分析】(1)当时,原不等式可化为,去绝对值为.分、、讨论即可求得a的取值范围;(2),根据基本不等式可得到,即可证得.【详解】(1)当时,,等价于,故,即,当时,.若,成立,即在恒成立,只需即可,所以有,故;当时,由可得,这与矛盾,此时无解;当时,可化为,显然该式不成立,即不等式不成立.综上,a的取值范围为.(2)由,,,知,当且仅当,且时,即时等号成立. 所以,,又,所以.∵,∴,即.∴.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
四川省遂宁中学2022-2023学年高三数学(文)上学期10月月考试题(Word版有解析)
河南省新未来联盟2022-2023学年高三数学(文)上学期12月联考试题(Word版带解析)
四川省绵阳市绵阳中学2022-2023学年高三数学上学期12月月考试题(Word版带解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-02-22 10:10:06
页数:19
价格:¥3
大小:1.45 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划