首页

北师大版九下数学2.5第2课时利用二次函数求方程的近似根课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/23

2/23

3/23

4/23

剩余19页未读,查看更多内容需下载

2.5二次函数与一元二次方程第2课时利用二次函数求方程的近似根第二章二次函数 问题:上节课我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0)之间的关系,那么如何利用二次函数图象直接求出一元二次方程的根呢?回顾与思考 例1:求一元二次方程的近似根(精确到0.1).分析:一元二次方程x²-2x-1=0的根就是抛物线y=x²-2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.利用图象法求一元二次方程的近似根 解:画出函数y=x²-2x-1的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间. 先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:x…-0.4-0.5…y…-0.040.25…观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4. (1)用描点法作二次函数y=ax2+bx+c的图象;(2)观察估计二次函数的图象与x轴的交点的横坐标;(可将单位长度十等分,借助计算器确定其近似值);(3)确定方程ax2+bx+c=0的近似根.方法归纳利用图象法求一元二次方程的近似根 1.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的近似根为()A.x1≈-2.1,x2≈0.1B.x1≈-2.5,x2≈0.5C.x1≈-2.9,x2≈0.9D.x1≈-3,x2≈1解析:由图象可得二次函数y=ax2+bx+c图象的对称轴为x=-1,而对称轴右侧图象与x轴交点到原点的距离约为0.5,∴x2≈0.5;又∵对称轴为x=-1,则=-1,∴x1=2×(-1)-0.5=-2.5.故x1≈-2.5,x2≈0.5.故选B.B针对训练 解答本题首先需要根据图象估计出一个根,再根据对称性计算出另一个根,估计值的精确程度,直接关系到计算的准确性,故估计尽量要准确.方法总结 例2求一元二次方程的近似根(精确到0.1).分析:令y=x²-2x-1-3=x²-2x-4,则x²-2x-1=3的根就是抛物线y=x²-2x-4与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标. 2xyO解:y=x²-2x-4的图象如图所示.解:由图象可知方程的一根在3到4之间,另一根在-1到-2之间.(1)先求3到4之间的根.利用计算器进行探索:x…3.23.3…y…-0.160.29…因此,x=3.2是方程的一个近似根.(2)可类似地求出另一个根为x=-1.2. 例2变式:你还能利用y=x²-2x-1的图象求一元二次方程的近似根吗(精确到0.1)?分析:在y=x²-2x-1的图象中作直线y=3,再用图象法求出直线与抛物线交点的横坐标,则横坐标的近似值即为所求方程的近似根.y=3 一元二次方程ax2+bx+c=m的根就是二次函数y=ax2+bx+c与直线y=m(m是实数)图象交点的横坐标.既可以用求根公式求二次方程的根,也可以通过画二次函数图象来估计一元二次方程的根.方法归纳 问题1函数y=ax2+bx+c的图象如图,那么方程ax2+bx+c=0的根是___________;不等式ax2+bx+c>0的解集是_____________;不等式ax2+bx+c<0的解集是___________.3-1Oxyx1=-1,x2=3x<-1或x>3-1<x<3合作探究*利用函数的图象求一元二次不等式的解集 拓广探索:函数y=ax2+bx+c的图象如图,那么方程ax2+bx+c=2的根是______________;不等式ax2+bx+c>2的解集是___________;不等式ax2+bx+c<2的解集是_________.3-1Ox2(4,2)(-2,2)x1=-2,x2=4x<-2或x>4-2<x<4y 问题2如果不等式ax2+bx+c>0(a≠0)的解集是x≠2的一切实数,那么函数y=ax2+bx+c的图象与x轴有____个交点,坐标是______.方程ax2+bx+c=0的根是______.1(2,0)x=2 问题3如果方程ax2+bx+c=0(a≠0)没有实数根,那么函数y=ax2+bx+c的图象与x轴有______个交点;不等式ax2+bx+c<0的解集是多少?0解:(1)当a>0时,ax2+bx+c<0无解;(2)当a<0时,ax2+bx+c<0的解集是一切实数. 试一试:利用函数图象解下列方程和不等式:(1)①-x2+x+2=0;②-x2+x+2>0;③-x2+x+2<0.(2)①x2-4x+4=0;②x2-4x+4>0;③x2-4x+4<0.(3)①-x2+x-2=0;②-x2+x-2>0;③-x2+x-2<0.xy020xy-12xy0y=-x2+x+2x1=-1,x2=2-1<x<2x1<-1,x2>2y=x2-4x+4x=2x≠2的一切实数x无解y=-x2+x-2x无解x无解x为全体实数 二次函数y=ax2+bx+c的图象与x轴交点a>0a<0有两个交点x1,x2(x1<x2)有一个交点x0没有交点y<0,x1<x<x2.y>0,x2<x或x<x1y>0,x1<x<x2.y<0,x2<x或x<x1y>0,x0之外的所有实数;y<0,无解y<0,x0之外的所有实数;y>0,无解y>0,所有实数;y<0,无解y<0,所有实数;y>0,无解要点归纳二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次不等式的关系 判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09C1.根据下列表格的对应值: 2.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=-3.4,则方程的另一个近似根(精确到0.1)为(  )A.4.4B.3.4C.2.4D.1.4D 3.用图象法求一元二次方程的近似根(精确到0.1).解:画出x2+x-1=0的图象,如图所示,由图象知,方程有两个根,一个在-2和-1之间,另一个在0到1之间.通过计算器估算,可得到抛物线与x轴交点的横坐标大约为-1.6和0.6.即一元二次方程的实数根为x1≈-1.6,x2≈0.6. 4.已知二次函数的图象,利用图象回答问题:(1)方程的解是什么?(2)x取什么值时,y>0?(3)x取什么值时,y<0?xyO248解:(1)x1=2,x2=4;(2)x<2或x>4;(3)2<x<4. 二次函数图象由图象与x轴的交点位置,判断方程根的近似值一元二次方程的根一元二次不等式的解集

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-02-16 20:00:03 页数:23
价格:¥3 大小:3.04 MB
文章作者:随遇而安

推荐特供

MORE