福建省 、永安一中、漳平一中三校2022-2023学年高三数学上学期12月联考试卷(Word版附答案)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/11
2/11
3/11
4/11
5/11
6/11
7/11
8/11
9/11
10/11
剩余1页未读,查看更多内容需下载
“德化一中、永安一中、漳平一中”三校协作2022—2023学年第一学期联考高三数学试题(考试时间:120分钟总分:150分)第Ⅰ卷(选择题,共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z满足(z1)i1i,则|z|()A.iB.1iC.2D.12.已知集合Ax0log2x1,Bxxa.若ABA,则实数a的取值范围是()A.aa1B.aa1C.aa2D.aa223.已知为实数,则使命题“x0(0,2),2x0x010”是假命题的一个充分不必要条件是()A.22B.13C.0D.44.若等边三角形ABC的边长为1,点M满足CMCB2CA,则MAMB()A.3B.2C.23D.35.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称为“阳马”;四个面均为直角三角形的四面体称为“鳖臑”.如图,在堑堵ABCABC中,ACBC,且AAAB2,则下列说法错误的是()1111A.四棱锥BAACC为“阳马”11B.四面体ACCB为“鳖臑”112C.四棱锥BAACC体积的最大值为113D.过A点分别作AEAB于点E,AFAC于点F,则EFAB11126.已知函数f(x)23cosxcosx2sinx,若f(x)在区间m,上单调递减,则实数m的最小值24是()A.B.C.D.126126237.抛物线x4y的焦点为F,过点F作斜率为的直线l与抛物线在y轴右侧的部分相交于点A,3过点A作抛物线准线的垂线,垂足为H,则AHF的面积是()A.43B.4C.33D.88.艾萨克·牛顿英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f(x)零点时给出一个数列x:满足n三校联考高三数学试题第1页共4页
fxnxx2n1n,我们把该数列称为牛顿数列.如果函数f(x)axbxc(a0)有两个零点1,fxnx2n2,数列xn为牛顿数列.设anln,已知a11,xn2,an的前n项和为Sn,则S20221x1n等于()20232022A.2022B.2023C.2D.2二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知函数f(x)对xR都有f(x)f(x4)f(2),若函数yf(x3)的图象关于直线x3对称,且对x1,x2[0,2],当x1x2时,都有(x2x1)f(x2)f(x1)0,则下列结论正确的是()A.f(2)0B.f(x)是偶函数C.f(x)是周期为4的周期函数D.f(3)f(4)10.下列结论中,正确的结论有()aamA.若ab0,m0,则B.如果0x1,那么x43x取得最大值时x的值为1bbmC.已知ab1,则alnbblnaD.若xxy2y,x0,y0,则x2y的最小值是811.如图,平面四边形ABCD中,△BCD是等边三角形,ABBD,且ABBD2,M是AD的中点.沿BD将△BCD翻折,折成三棱锥CABD,在翻折过程中,下列结论正确的是()A.棱CD上总会有一点N,使得MN//平面ABCB.存在某个位置,使得CM与BD所成角为锐角C.CMB一定是二面角CADB的平面角28D.当平面ABD平面BDC时,三棱锥CABD的外接球的表面积是32212.在平面直角坐标系xoy中,已知点M(2,1),N(2,1),动点P满足PMPNa(aR),记点P的轨迹为曲线C,则()aA.存在实数a,使得曲线C上所有的点到点(1,)的距离大于24B.存在实数a,使得曲线C上有两点到点(5,0)与(5,0)的距离之和为6C.存在实数a,使得曲线C上有两点到点(5,0)与(5,0)的距离之差为2D.存在实数a,使得曲线C上有两点到点(a,0)的距离与到直线xa的距离相等三校联考高三数学试题第2页共4页
第Ⅱ卷(选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分.2213.若点P(1,1)为圆xy6x0的弦MN的中点,则弦MN所在直线方程为.14.若等差数列{a}的公差为2,a是a与a的等比中项,则该数列的前n项和S取得最大值时,nn526n的值为.2x2x215.已知函数f(x),若方程f(x)k有两个不相等的实数根,则实数k的取值范围xe是.2222xyab16.已知双曲线C:1(ab0)的左、右焦点分别为F,F,P是C上的一点,且Q(,0)2212ab2满足FPQ,FPQ,则双曲线C的离心率为.1262四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本题满分10分)已知ABC的内角A,B,C的对边分别为a,b,c,且向量m(2ac,b)与向量n(cosC,cosB)共线.(Ⅰ)求B;33(Ⅱ)若b3,ABC的面积为,判断ABC的形状,并说明理由.418.(本题满分12分)数列{a}的前n项和S满足S2an.nnnn(Ⅰ)求数列{a}的通项公式;n(Ⅱ)若数列{b}为等差数列,且ba,ba,求数列{ab}的前n项T.n3273nnn19.(本题满分12分)如图,在四棱锥PABCD中,底面ABCD为直角梯形,AD//BC,ADC90,平面PAD底面ABCD,1Q为AD的中点,M是棱PC上的点,PAPD2,BCAD1,CD3.2(Ⅰ)求证:平面MQB平面PAD;(Ⅱ)若二面角MBQC的大小为60,求QM的长.三校联考高三数学试题第3页共4页
20.(本题满分12分)疫情期间,为保障学生安全,要对学校进行消毒处理.校园内某区域由矩形OABC与扇形OCD组成,ππOA2m,AB23m,COD.消毒装备的喷射角EOF,阴影部分为可消毒范围,要求点E33在弧CD上,点F在线段AB上,设FOC,可消毒范围的面积为S.(Ⅰ)求消毒面积S关于的关系式,并求出tan的范围;(Ⅱ)当消毒面积S最大时,求tan的值.21.(本题满分12分)22xy已知椭圆C:221(ab0)的左、右焦点分别为F1,F2,其焦距为23,点E在椭圆C上,EF1EF2,abb直线EF的斜率为(c为半焦距).1c(Ⅰ)求椭圆C的方程;22(Ⅱ)设圆O:xy2的切线l交椭圆C于A,B两点(O为坐标原点),求证:OAOB;2(Ⅲ)在(Ⅱ)条件下,求|OA||OB|的最大值.22.(本题满分12分)12已知函数fxalnxxa1xa0.2(Ⅰ)讨论函数fx的单调性;(Ⅱ)设函数gx3axfx有两个极值点x1,x2x1x2,证明:gx1gx210lna.三校联考高三数学试题第4页共4页
“德化一中、永安一中、漳平一中”三校协作2022—2023学年第一学期联考高三数学试题参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.B3.C4.D5.C6.B7.A8.D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得2分.9.ABC10.AD11.AD12.BD三、填空题:本题共4小题,每小题5分,共20分.264313.y2x114.615.,0{}16.225ee四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.→→17.解:(Ⅰ)∵向量�=(2a﹣c,b)与向量�=(cosC,cosB)共线,∴(2a﹣c)cosB﹣bcosC=0,········································································2分即(2sinAsinC)cosBsinBcosC,∴2sinAcosB=sin(B+C)=sinA,�∵sinA≠0,∴cosB=,···············································································4分��∵B∈(0,π),∴B=;··············································································5分�1333(Ⅱ)由已知SacsinBac,所以ac3································6分ABC2442222由余弦定理得ac2accos3,所以ac6······································7分3解得ac3,························································································9分�又因为B=,所以ABC为正三角形.·························································10分�三校联考高三数学试题参考答案第1页共7页
18.解:(Ⅰ)当�=�时,��=���−�,所以��=�,··········································1分因为��=���−�①,所以当�≥�时,��−�=���−�−�−�②,······················2分①-②得��=���−���−�−�,所以��=���−�+�,········································3分��+����−�+�+����−�+�所以===�,·····························································5分��−�+���−�+���−�+�所以��+�是首项为2,公比为2的等比数列,所以��+�=�⋅��−�,所以��=��−�;·······················································6分(Ⅱ)由(Ⅰ)知,��=�,��=�,所以��=��=�,��=��=�,···················7分设��的公差为�,则��=��+�−�⋅�,所以�=�,····································8分所以��=��+�−�⋅�=�,·····································································9分所以��=���−�=�⋅��−�,��设数列�⋅��的前�项和为�,�所以�=�×�+�×��+�×��+⋯+�⋅��③,���=�×��+�×��+�×��+⋯+�⋅��+�④,�③-④得����+���−���+��+�−��=�+�+�+⋯+�−�⋅�=−�⋅�=�−�⋅�−�,�−�所以��=�−�⋅��+�+�,······································································10分��+�又因为数列�的前�项和等于�+�+�+⋯+�=,································11分��+���+�所以����的前�项和为Tn=�−�⋅�−+�.····································12分�119.(Ⅰ)证明:∵AD//BC,BC=AD,Q为AD的中点,2∴四边形BCDQ为平行四边形,∴CD//BQ······················································2分∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴BQ⊥平面PAD,∵BQ平面MQB,∴平面MQB⊥平面PAD;···············································5分三校联考高三数学试题参考答案第2页共7页
(Ⅱ)解:∵PA=PD,Q为AD的中点,∴PQ⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD,···6分如图,以Q为原点建立空间直角坐标系,则Q(0,0,0),A(1,0,0),P(0,0,3),B(0,3,0),C(1,3,0),设PMPC,且01,得M(,3,33),所以QM(,3,33),QB(0,3,0),···········································7分设平面MBQ法向量为m(x,y,z),mQM0x3y(33)z0由,得,mQB03y01令x3,则m(3,0,),··································································8分由题意知平面BQC的一个法向量为n(0,0,1),··············································9分1|||nm|1∵二面角M-BQ-C为60°,∴cos60,nm1223()1解得,·····························································································11分21337∴QM(,,),∴|QM|.··························································12分2222π20.解:(Ⅰ)由题意可知COE,31π2则扇形COE的面积为S1232π6,·····································3分232OC//AB,则AFOFOC,且AF,············································4分tan122∴梯形OCBF的面积为S243243,··································6分2tantan2∴SS1S22π436,tanOA3πtanABO,∴ABO,AB36三校联考高三数学试题参考答案第3页共7页
πππ又EOF,所以,3633∴tan,3;·····················································································8分323(Ⅱ)设y6,tan,3,tan326sin2223sin13sin113y6,且sin,,············9分22222sinsinsin3记为锐角,且sin,3π2当时,y0,此时函数y6单调递减,6tanπ2当时,y0,此时函数y6单调递增,································11分3tan36sin2∴当sin时,cos,y取最小值,S取最大值,此时tan.33cos2···············································································································12分21.解:(Ⅰ)连接EF1,EF2,由题意知FEF,c3,······························1分122bbc设EFF,tan,sin,cos,12caacbEF23,EF23,EFEF2a,1212aa623b22即2a,又ab3,解得a6,b3,aa22xy椭圆C的方程为1··········································································4分63(Ⅱ)(i)当切线与坐标轴垂直时,交点坐标为(2,2),AOB90,OAOB,·················································································································5分(ii)当切线与坐标轴不垂直时,设切线为ykxm(k0),A(x1,y1),B(x2,y2),三校联考高三数学试题参考答案第4页共7页
m由圆心到直线距离为d2,m222k2,·········································6分2k1222联立切线方程与椭圆方程消去y整理得(2k1)x4kmx2m60,24km2m6∴xx,xx,······························································7分1221222k12k122223m66kxxyy(k1)xxkm(xx)m0,1212121222k1OAOB,·····························································································9分综上所述,OAOB;(Ⅲ)当切线与坐标轴直时,OAOB4,当切线与坐标轴不垂直时,由(Ⅱ)知OAOB,OAOB2AB,················10分2222(1k)(8k2)AB1kxx1222k1,22令tk,则AB2231,······················································11分4t4t2当且仅当时k等号成立,OAOB32,2综上所述,OAOB的最大值为32.···························································12分22.解:(Ⅰ)由f(x)定义域为x0,,且2axa1xax1xafxxa1,·······································1分xxx令fx0得,x1或xa,①当0a1时,x0,a,f(x)0,fx单调递增,xa,1,f(x)0,fx单调递减,x1,,f(x)0,fx单调递增,···········································2分三校联考高三数学试题参考答案第5页共7页
②当a1时,f(x)0,fx在0,单调递增,···········································3分③当a1时,x0,1,f(x)0,fx单调递增,x1,a,f(x)0,fx单调递减,xa,,f(x)0,fx单调递增,·············································4分综上,当0a1时,fx在区间0,a,1,上单调递增,fx在区间a,1上单调递减;当a1时,fx在区间0,上单调递增;当a1时,fx在区间0,1,a,上单调递增,fx在区间1,a单调递减;2212a4xaxx4xa(Ⅱ)由已知,gx4xalnxx,则gx4x,2xxx函数gx有两个极值点x,xxx,即x24xa0在0,上有两个不等实根,1212·················································································································5分h0a02令hxx4xa,只需,故0a4,····································6分h2a40又x1x24,x1x2a,················································································7分1212所以gx1gx24x1alnx1x14x2alnx2x2221224x1x2alnx1lnx2x1x2aalna8,···············8分2要证gx1gx210lna,即证aalna810lna,只需证1alnaa20,令ma1alnaa2,a0,4,····························································9分1a1则malna1lna,aa11因为ma0恒成立,所以ma在a0,4上单调递减,2aa1又m110,m2ln20,21由零点存在性定理得,a01,2使得ma00,即lna0,a0所以a0,a0时,ma0,ma单调递增,aa0,4时,ma0,ma单调递减,三校联考高三数学试题参考答案第6页共7页
11则mamaxma01a0lna0a021a0a02a03,···············11分aa001∵ya03在a01,2上显然单调递增,a0111∴a03230,a220∴ma0,即gx1gx210lna,得证.···············································12分三校联考高三数学试题参考答案第7页共7页
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)