首页

二次函数综合专题 加强练一(答案解析)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/15

2/15

剩余13页未读,查看更多内容需下载

二次函数综合专题加强练(1)答案解析一、最值问题(面积最值、线段长(和、差)最值、胡不归问题)1.如图,抛物线y=ax2+bx+c与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且OA=3OB.(1)求抛物线的函数关系式;(2)若P是抛物线上且位于直线AC上方的一动点,求△ACP的面积的最大值及此时点P的坐标;胡不归问题方法总结1、2、3、(3)在线段OC上是否存在一点M,使BM+CM的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.\n改:BM+1/2CM答案:D1)【解答】解:(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点P作y轴的平行线交CA于点H,由点A、C的坐标得,直线AC的表达式为:y=﹣x+3△ACP的面积=PH×OA=3×(x2﹣2x+3+x﹣3)=(﹣x2+3x),当x=时,△ACP的面积的最大,最大值为:,此时点P(,);(3)过点M作MN⊥AC,则MN=CM,故当B、M、N三点共线时,BM+CM=BN最小,直线CA的倾斜角为45°,BN⊥AC,则∠NBA=45°,\n即BN=AB=2=AN,则点N(1,2).一、多边形存在问题(等腰三角形、直角三角形、四边形存在问题)2、已知二次函数与x轴交于A、B(A在B的左侧)与y轴交于点C,连接AC、BC.(1)如图1,点P是直线BC上方抛物线上一点,当△PBC面积最大时,点M、N分别为x、y轴上的动点,连接PM、PN、MN,求△PMN的周长最小值;(2)如图2,点C关于x轴的对称点为点E,将抛物线沿射线AE的方向平移得到新的拋物线y',使得y'交x轴于点H、B(H在B的左侧).将△CHB绕点H顺时针旋转90°至△C'HB'.抛物线y'的对称轴上有一动点S,坐标系内是否存在一点K,使得以O、C'、K、S为顶点的四边形是菱形,若存在,请直接写出点K的坐标;若不存在,请说明理由.沿射线AE的方向平移相当于向右平移2个单位,向下平移4个单位,即变为:故答案b=5/2\n菱形问题方法总结1、等腰三角形2、中点法2)【解答】解:(1)如图1,A(﹣2,0),B(8,0),C(0,4),∴直线BC的解析式为,过点P作y轴平行线,交线段BC于点Q,设,∴=,∵0<m<8,∴P(4,6).作P点关于y轴的对称点P1,P点关于x轴的对称点P2,连接P1P2交x轴、y轴分别为M,N,\n此时△PMN的周长最小,其周长等于线段P1P2的长;∵P1(﹣4,6),P2(4,﹣6),∴.(2)如图2中,∵E(0,﹣4),平移后的抛物线经过E,B,∴抛物线的解析式为y=﹣x2+bx﹣4,把B(8,0)代入得到b=5/2,∴平移后的抛物线的解析式为y=﹣x+5/2x﹣4=﹣(x﹣2)(x﹣8),令y=0,得到x=2或8,∴H(2,0),∵△CHB绕点H顺时针旋转90°至△C′HB′,∴C′(6,2),当OC′=C′S时,可得菱形OC′S1K1,菱形OC′S2K2,∵OC′=C′S==2,∴可得S1(5,2﹣),S2(5,2+),∵点C′向左平移一个单位,向下平移得到S1,∴点O向左平移一个单位,向下平移个单位得到K1,∴K1(﹣1,﹣),同法可得K2(﹣1,),当OC′=OS时,可得菱形OC′K3S3,菱形OC′K4S4,同法可得K3(11,2﹣),K4(11,2+),当OC′是菱形的对角线时,设S5(5,m),则有52+m2=12+(2﹣m)2,解得m=﹣5,∴S5(5,﹣5),∵点O向右平移5个单位,向下平移5个单位得到S5,∴C′向上平移5个单位,向左平移5个单位得到K5,∴K5(1,7),综上所述,满足条件点K的坐标为(﹣1,﹣)或(﹣1,)或(11,2﹣)或(11,2+\n)或(1,7)3、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.\n3)【解答】解:(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).∴A(﹣1,0),B(3,0).当x=4时,y=.∴E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.∴直线AE的解析式为y=x+.(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.\n∴△EPC的面积=×(x2+x)×4=﹣x2+x.∴当x=2时,△EPC的面积最大.∴P(2,﹣).如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.∵K是CB的中点,∴k(,﹣).∴tan∠KCP=.∵OD=1,OC=,∴tan∠OCD=.∴∠OCD=∠KCP=30°.∴∠KCD=30°.∵k是BC的中点,∠OCB=60°,∴OC=CK.∴点O与点K关于CD对称.∴点G与点O重合.∴点G(0,0).∵点H与点K关于CP对称,∴点H的坐标为(,﹣).∴KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.∴GH==3.∴KM+MN+NK的最小值为3.(3)如图3所示:\n∵y′经过点D,y′的顶点为点F,∴点F(3,﹣).∵点G为CE的中点,∴G(2,).∴FG==.∴当FG=FQ时,点Q(3,),Q′(3,).当GF=GQ时,点F与点Q″关于y=对称,∴点Q″(3,2).当QG=QF时,设点Q1的坐标为(3,a).由两点间的距离公式可知:a+=,解得:a=﹣.∴点Q1的坐标为(3,﹣).综上所述,点Q的坐标为(3,)或′(3,)或(3,2)或(3,﹣).\n一、角度问题(45度角,倍角关系问题)4、如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),联结PC.当∠PCB=∠ACB时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.4)【解答】解:(1)∵对称轴为直线x=2,点A的坐标为(1,0),∴点B的坐标是(3,0).将A(1,0),B(3,0)分别代入y=x2+bx+c,得.解得.则该抛物线解析式是:y=x2﹣4x+3.由y=x2﹣4x+3=(x﹣2)2﹣1知,该抛物线顶点坐标是(2,﹣1);(答案图像有问题)(2)如图1,过点P作PN⊥x轴于N,过点C作CM⊥PN,交NP的延长线于点M,∵∠CON=90°,∴四边形CONM是矩形.∴∠CMN=90°,CO=MN、\nHM∴y=x2﹣4x+3,∴C(0,3).∵B(3,0),∴OB=OC=3.P∵∠COB=90°,∴∠OCB=∠BCM=45°.又∵∠ACB=∠PCB,∴∠OCB﹣∠ACB=∠BCM﹣∠PCB,即∠OCA=∠PCM.更改后图像∴tan∠OCA=tan∠PCM.∴=.故设PM=a,MC=3a,PN=3﹣a.∴P(3a,3﹣a),将其代入抛物线解析式y=x2﹣4x+3,得(3a)2﹣4(3﹣a)+3=3﹣a.解得a1=,a2=0(舍去).∴P(,).(3问答案方法不好,可选择更好方法)(3)设抛物线平移的距离为m,得y=(x﹣2)2﹣1﹣m.∴D(2,﹣1﹣m).如图2,过点D作直线EF∥x轴,交y轴于点E,交PQ延长线于点F,∵∠OED=∠QFD=∠ODQ=90°,∴∠EOD+∠ODE=90°,∠ODE+∠QDP=90°.∴∠EOD=∠QDF.∴tan∠EOD=tan∠QDF,∴=.∴=.解得m=.故抛物线平移的距离为.5、如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.\n(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.【解答】解:(1)根据题意得A(﹣4,0),C(0,2),∵抛物线y=﹣x2+bx+c经过A、C两点,∴,∴,∴y=﹣x2﹣x+2;(2)①如图,令y=0,∴﹣x2﹣x+2=0,∴x1=﹣4,x2=1,∴B(1,0),过D作DM⊥x轴交AC于点M,过B作BN⊥x轴交于AC于N,\n∴DM∥BN,∴△DME∽△BNE,∴==,设D(a,﹣a2﹣a+2),∴M(a,a+2),∵B(1,0),∴N(1,),∴==(a+2)2+;∴当a=﹣2时,的最大值是;②∵A(﹣4,0),B(1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(﹣,0),∴PA=PC=PB=,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=,过D作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即,令D(a,﹣a2﹣a+2),∴DR=﹣a,RC=﹣a2﹣a,∴,∴a1=0(舍去),a2=﹣2,∴xD=﹣2,情况二,∴∠FDC=2∠BAC,\n∴tan∠FDC=,设FC=4k,∴DF=3k,DC=5k,∵tan∠DGC==,∴FG=6k,∴CG=2k,DG=3k,∴RC=k,RG=k,DR=3k﹣k=k,∴==,∴a1=0(舍去),a2=﹣,点D的横坐标为﹣2或﹣.四、相似问题6、抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.\n

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-07-02 10:00:04 页数:15
价格:¥5 大小:452.00 KB
文章作者:180****8757

推荐特供

MORE