首页

第十八章平行四边形18.1.2第1课时平行四边形的判定(1)教案(人教版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

18.1.2 平行四边形的判定第1课时 平行四边形的判定(1)第3页共3页1.掌握平行四边形的判定定理;(重点)2.综合运用平行四边形的性质与判定解决问题.(难点)                  一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?二、合作探究探究点一:两组对边分别相等的四边形是平行四边形如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解析:根据题意,利用全等可证明AD=FE,DF=AE,从而可判断四边形DAEF为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC=DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.探究点二:两组对角分别相等的四边形是平行四边形如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.第3页共3页 (1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形”进行证明.(1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=180°-40°-85°=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB=40°,∠DCB+∠B=180°,∴∠DAB=∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D=∠B=55°,∴四边形ABCD是平行四边形.方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路.探究点三:对角线相互平分的四边形是平行四边形如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC≌△BOD;(2)此题已知AO=BO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OE=OF即可.证明:(1)∵AC∥BD,∴∠C=∠D.在△AOC和△BOD中,∵∴△AOC≌△BOD(AAS);(2)∵△AOC≌△BOD,∴CO=DO.∵E、F分别是OC、OD的中点,∴OF=OD,OE=OC,∴EO=FO.又∵AO=BO,∴四边形AFBE是平行四边形.方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.探究点四:平行四边形的判定定理(1)的应用【类型一】利用平行四边形的判定定理(1)证明线段或角相等如图,在平行四边形ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点,请判断线段DE,BF的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA=OC,OB=OD.利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE是平行四边形,从而得出DE=BF,DE∥BF.解:DE=BF,DE∥BF.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵E,F分别是OA,OC的中点,∴OE=OF,∴四边形BFDE是平行四边形,∴DE=BF,第3页共3页 DE∥BF.方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】平行四边形的判定定理(1)的综合运用如图,已知四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F.(1)求证:△ABE≌△CDF;(2)连接BF、DE,试判断四边形BFDE是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS”可证出△ABE≌△CDF;(2)首先根据△ABE≌△CDF得出AE=FC,BE=DF.再利用已知得出△ADE≌△CBF,进而得出DE=BF,即可得出四边形BFDE是平行四边形.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF中,∴△ABE≌△CDF(AAS);(2)解:四边形BFDE是平行四边形.理由如下:∵△ABE≌△CDF,∴AE=FC,BE=DF.∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAC=∠BCA.在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴DE=BF,∴四边形BFDE是平行四边形.方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理(1)的应用在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.第3页共3页

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-03-06 19:00:06 页数:3
价格:¥3 大小:1.08 MB
文章作者:随遇而安

推荐特供

MORE