首页

四川省新津中学2022届高三数学12月月考试题理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/10

2/10

剩余8页未读,查看更多内容需下载

新津中学高三12月月考试题数学(理科)第Ⅰ卷一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={-1,0,1},N={x|x2≤x},则M∩N=(  ).A.{0}B.{0,1}C.{-1,1}D.{-1,0,1}2.复数z满足(1+i)2·z=-1+i(i为虚数单位).则在复平面内,复数z对应的点位于(  ).A.第一象限B.第二象限C.第三象限D.第四象限3.函数y=的值域是(  ).A.[0,+∞)B.[0,4]C.[0,4)D.(0,4)4.已知O是△ABC所在平面内一点,D为BC边的中点,且2++=0,那么(  ).A.=B.=2C.=3D.2=5.下列几何体各自的三视图中,有且仅有两个视图相同的是(  ).A.①②B.①③C.①④D.②④6.在数列{an}中,a1=1,a2=5,an+2=an+1-an(n∈N*),则a100等于(  ).A.1B.-1C.2D.07.已知球的直径SC=4,A、B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为(  ).A.3B.2C.1D.8.若执行如图所示的框图,输入x1=1,x2=2,x3=3,=2,则输出的数等于(  ).A.  B.C.  10D.19.已知椭圆+=1(a>b>0)的中心为O,左焦点为F,A是椭圆上的一点.·=0且·=2,则该椭圆的离心率是(  ).A.B.C.3-D.3+10.已知函数f(x)=x3+2bx2+cx+1有两个极值点x1,x2,且x1∈[-2,-1],x2∈[1,2],则f(-1)的取值范围是(  ).A.B.C.[3,12]D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.11.(x-2)6的展开式中x3的系数为________.(用数字作答)12.若点P(1,1)为圆C:(x-3)2+y2=9的弦MN的中点,则弦MN所在直线方程为________.13.方程x2+3ax+3a+1=0(a>2)的两根为tanA,tanB,且A,B∈,则A+B=________.14.已知函数f(x)=loga(x2-ax+2)在(2,+∞)上为增函数,则实数a的取值范围为________.15.设f(x)是定义在R上恒不为零的函数,且对任意的实数x,y∈R,都有f(x)·f(y)=f(x+y),若a1=,an=f(n)(n∈N*),则数列{an}的前n项和Sn的取值范围是________.三.解答题:共75分.解答应写出文字说明,证明过程或演算步骤.16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知=.(1)求的值;(2)若cosB=,b=2,求△ABC的面积S.17.正项数列{an}满足:a-(2n-1)an-2n=0.(1)求数列{an}的通项公式an;(2)令bn=,求数列{bn}的前n项和Tn.18.如图,A地到火车站共有两条路径L1和L210,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:时间(分钟)10~2020~3030~4040~5050~60L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望.19.如图(1),在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2.将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图(2).(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.20.如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.1021.已知函数(其中),函数在点处的切线过点.(Ⅰ)求函数的单调区间;(Ⅱ)若函数与函数的图像在有且只有一个交点,求实数的取值范围.1012月月考数学(理科)答案1-6BACAD7-10BDCAC二、填空题:本大题共4小题,每小题5分.11.-16012.2x-y-1=0.13.-14.(1,3]15.三.解答题:共75分.解答应写出文字说明,证明过程或演算步骤.16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知=.(1)求的值;(2)若cosB=,b=2,求△ABC的面积S.解 (1)由正弦定理,则=,所以=,即(cosA-2cosC)sinB=(2sinC-sinA)cosB,化简可得sin(A+B)=2sin(B+C).因为A+B+C=π,所以sinC=2sinA.因此=2.(2)由=2,得c=2a.由余弦定理b2=a2+c2-2accosB及cosB=,b=2,得4=a2+4a2-4a2×.解得a=1,从而c=2.因为cosB=,且0<b<π,所以sinb=,因此s=acsinb=×1×2×=.17.正项数列{an}满足:a-(2n-1)an-2n=0.(1)求数列{an}的通项公式an;(2)令bn=,求数列{bn}的前n项和tn.解:(1)由a-(2n-1)an-2n=0,得(an-2n)(an+1)=0.由于{an}是正项数列,所以an=2n.(2)由an=2n,bn=,10得bn==.tn===.18.如图,a地到火车站共有两条路径l1和l2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:时间(分钟)10~2020~3030~4040~5050~60l1的频率0.10.20.30.20.2l2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用x表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求x的分布列和数学期望.解>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.(1)解 由题意知,b==.因为离心率e==,所以==.所以a=2.所以椭圆C的方程为+=1.(2)证明 由题意可设M,N的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=x+1,①直线QN的方程为y=x+2.②法一 联立①②解得x=,y=,即T.由+=1,可得x=8-4y.因为2+2=====1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.10法二 设T(x,y),联立①②解得x0=,y0=.因为+=1,所以2+2=1.整理得+=(2y-3)2,所以+-12y+8=4y2-12y+9,即+=1.所以点T坐标满足椭圆C的方程,即点T在椭圆C上.21.已知函数(其中),函数在点处的切线过点.(Ⅰ)求函数的单调区间;(Ⅱ)若函数与函数的图像在有且只有一个交点,求实数的取值范围.解:(1),,切线过点,①当时,单调递增,单调递减②当时,单调递减,单调递增(2)等价方程在只有一个根即在只有一个根令,等价函数在与轴只有唯一的交点①当时,在递减,的递增当时,,要函数在与轴只有唯一的交点或,或②当时,在递增,的递减,递增,当时,,在与轴只有唯一的交点③当,在的递增在与轴只有唯一的交点10故的取值范围是或或.10</b<π,所以sinb=,因此s=acsinb=×1×2×=.17.正项数列{an}满足:a-(2n-1)an-2n=0.(1)求数列{an}的通项公式an;(2)令bn=,求数列{bn}的前n项和tn.解:(1)由a-(2n-1)an-2n=0,得(an-2n)(an+1)=0.由于{an}是正项数列,所以an=2n.(2)由an=2n,bn=,10得bn==.tn===.18.如图,a地到火车站共有两条路径l1和l2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:时间(分钟)10~2020~3030~4040~5050~60l1的频率0.10.20.30.20.2l2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用x表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求x的分布列和数学期望.解>

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-25 20:27:25 页数:10
价格:¥3 大小:219.03 KB
文章作者:U-336598

推荐特供

MORE