首页

山东省滕州市第三中学2022届高三数学上学期期末考试试题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/17

2/17

剩余15页未读,查看更多内容需下载

山东省滕州市第三中学2022届高三数学上学期期末考试试题一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合,则()A.B.C. D.2.若复数为纯虚数,则实数的值为A.B.C.D.或3.把函数f(x)的图象向右平移一个单位长度,所得图象恰与函数的反函数图像重合,则f(x)=A.B.C.D.4.“”是“函数在区间上单调递减”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.执行如图所示的程序框图,则输出的的值为(注:“”,即为“”或为“”.)A.B.C.D.6.的展开式中常数项为-17-\nA.B.C.D.7.如图,在矩形内:记抛物线与直线围成的区域为(图中阴影部分).随机往矩形内投一点,则点落在区域内的概率是A.B.C.D.8.在平面直角坐标系中,定义两点与之间的“直角距离”为.给出下列命题:(1)若,,则的最大值为;(2)若是圆上的任意两点,则的最大值为;(3)若,点为直线上的动点,则的最小值为.其中为真命题的是A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答.9.函数的定义域为.10.某几何体的三视图如图所示,其正视图是边长为2的正方形,侧视图和俯视图都是等腰直角三角形,则此几何体的体积是.-17-\n11.已知双曲线与椭圆有相同的焦点,且双曲线的渐近线方程为,则双曲线的方程为.12.设实数满足向量,.若,则实数的最大值为.13.在数列中,已知,,且数列是等比数列,则.(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14.(坐标系与参数方程选做题)在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.若曲线的参数方程为(为参数),曲线的极坐标方程为.则曲线与曲线的交点个数为________个.15.(几何证明选讲选做题)如图4,已知是⊙的直径,是⊙的切线,过作弦,若,,则.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数的图像经过点.(1)求的值;(2)在中,、、所对的边分别为、、,若,且-17-\n.求.17.(本小题满分12分)某网络营销部门为了统计某市网友2022年11月11日在某淘宝店的网购情况,随机抽查了该市当天名网友的网购金额情况,得到如下数据统计表(如图(1)):网购金额(单位:千元)频数频率合计若网购金额超过千元的顾客定义为“网购达人”,网购金额不超过千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为.(1)试确定,,,的值,并补全频率分布直方图(如图(2)).(2)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查.设为选取的人中-17-\n“网购达人”的人数,求的分布列和数学期望.18.(本小题满分14分)如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,.(1)求证平面;(2)求平面与平面所成锐二面角的余弦值;(3)求直线与平面所成角的余弦值.19.(本小题满分14分)已知数列的前项和为,且满足.(1)求,的值;(2)求;(3)设,数列的前项和为,求证:.20.(本小题满分14分)如图,直线,抛物线,已知点在抛物线上,且抛物线上的点到直线的距离的最小值为.(1)求直线及抛物线的方程;(2)过点的任一直线(不经过点)与抛物线交于、两点,直线与直线相交于点,记直线,,的斜率分别为,,.问:是否存在实数-17-\n,使得?若存在,试求出的值;若不存在,请说明理由.21.(本小题满分14分)已知函数.(1)求在上的最大值;(2)若直线为曲线的切线,求实数的值;(3)当时,设,且,若不等式恒成立,求实数的最小值.-17-\n说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分数.一、选择题:本大题每小题5分,满分40分.12345678DADADCBA二、填空题:本大题每小题5分,满分30分.三、解答题16.(本小题满分12分)解:(1)由题意可得,即.……………………………2分,,,.……………………………………………………………5分(2),,……………………………………………………7分.…………………………………………8分由(1)知,-17-\n.,,……………………………10分又,.……………12分【说明】本小题主要考查了三角函数的图象与性质,三角恒等变换,以及余弦定理等基础知识,考查了简单的数学运算能力.17.解:(1)根据题意,有解得…………………2分,.补全频率分布直方图如图所示.………4分(2)用分层抽样的方法,从中选取人,则其中“网购达人”有人,“非网购达人”有人.…………………6分故的可能取值为0,1,2,3;-17-\n,,,.…………………………10分所以的分布列为:.……………………12分【说明】本题主要考察读图表、分层抽样、概率、随机变量分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18.(本小题满分14分)解:(法一)(1)取中点为,连接、,且,,则且.…………2分四边形为矩形,且,且,,则.平面,平面,平面.……………………………………………………4分(2)过点作的平行线交的延长线于,连接,,,-17-\n,,,,四点共面.四边形为直角梯形,四边形为矩形,,,又,平面,,又平面平面,为平面与平面所成锐二面角的平面角.……………………7分,.即平面与平面所成锐二面角的余弦值为.……………………9分(3)过点作于,连接,根据(2)知,,,四点共面,,-17-\n,,又,平面,,则.又,平面.直线与平面所成角为.……………………………11分,,,,,.即直线与平面所成角的余弦值为.……………………………14分(法二)(1)四边形为直角梯形,四边形为矩形,,,又平面平面,且平面平面,平面.以为原点,所在直线为轴,所在直线为轴,所在直线为轴建立如图所示空间直角坐标系.-17-\n根据题意我们可得以下点的坐标:,,,,,,则,.………………2分,,为平面的一个法向量.又,平面.…………………………………………………………4分(2)设平面的一个法向量为,则,,,取,得.……………………………6分平面,平面一个法向量为,设平面与平面所成锐二面角的大小为,则.因此,平面与平面所成锐二面角的余弦值为.…………………9分(3)根据(2)知平面一个法向量为,,,………12分设直线与平面所成角为,则.因此,直线与平面所成角的余弦值为.………………………14分-17-\n【说明】本题主要考察空间点、线、面位置关系,二面角及三角函数及空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.19.解:(1)当时,有,解得.当时,有,解得.……………2分(2)(法一)当时,有,……………①.…………………②①—②得:,即:.…………5分..………………………………………8分另解:.又当时,有,.…………………………8分(法二)根据,,猜想:.………………………………3分用数学归纳法证明如下:(Ⅰ)当时,有,猜想成立.(Ⅱ)假设当时,猜想也成立,即:.那么当时,有,即:,………………………①又,…………………………②①-②得:,解,得.-17-\n当时,猜想也成立.因此,由数学归纳法证得成立.………………………………………8分(3),……………………………10分.………………………………………14分【说明】考查了递推数列的通项公式、数列裂项求和公式、放缩法证明不等式等知识,考查了学生的运算能力,以及化归与转化的思想.20.(本小题满分14分)解:(1)(法一)点在抛物线上,.……………………2分设与直线平行且与抛物线相切的直线方程为,由得,,由,得,则直线方程为.两直线、间的距离即为抛物线上的点到直线的最短距离,有,解得或(舍去).直线的方程为,抛物线的方程为.…………………………6分(法二)点在抛物线上,,抛物线的方程为.……2分-17-\n设为抛物线上的任意一点,点到直线的距离为,根据图象,有,,,的最小值为,由,解得.因此,直线的方程为,抛物线的方程为.…………………6分(2)直线的斜率存在,设直线的方程为,即,由得,设点、的坐标分别为、,则,,,,…………………………9分.…10分由得,,,……………………………………………13分.因此,存在实数,使得成立,且.…………………………14分【说明】本题主要考查抛物线的方程与性质、直线方程、直线与抛物线的位置关系,切线方程,点到直线距离,最值问题等基础知识,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.-17-\n21.(本小题满分14分)解:(1),…………………………2分令,解得(负值舍去),由,解得.(ⅰ)当时,由,得,在上的最大值为.…………………………………3分(ⅱ)当时,由,得,在上的最大值为.……………………………………4分(ⅲ)当时,在时,,在时,,在上的最大值为.…………………………………5分(2)设切点为,则……………………………6分由,有,化简得,即或,……………………………①由,有,……………②由①、②解得或.……………………………………………9分(3)当时,,-17-\n由(2)的结论直线为曲线的切线,,点在直线上,根据图像分析,曲线在直线下方.…………………………10分下面给出证明:当时,.,当时,,即.………………………12分,,.要使不等式恒成立,必须.……………13分又当时,满足条件,且,因此,的最小值为.…………………………………………………14分【说明】本题主要考查函数的性质、导数运算法则、导数的几何意义及其应用、不等式的求解与证明、恒成立问题,考查学生的分类讨论,计算推理能力及分析问题、解决问题的能力及创新意识-17-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-25 20:36:18 页数:17
价格:¥3 大小:459.80 KB
文章作者:U-336598

推荐特供

MORE