首页

广东省惠州市2022届高三数学第三次模拟考试试题 文(含解析)新人教A版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/14

2/14

剩余12页未读,查看更多内容需下载

2022-2022学年广东省惠州市高三第三次调研数学试卷(文科)参考答案与试题解析 一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.)1.(5分)(2022•烟台一模)i是虚数单位,若z(i+1)=i,则|z|等于(  ) A.1B.C.D.考点:复数求模;复数代数形式的乘除运算.专题:计算题.分析:利用复数的代数形式的乘除运算可求得z,再求模即可.解答:解:∵z(i+1)=i,∴z===,∴|z|=.故选C.点评:本题考查复数代数形式的乘除运算,考查复数的求模,属于基础题.2.(5分)(2022•惠州模拟)已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为(  ) A.{﹣1}B.{1}C.{﹣1,1}D.{﹣1,0,1}考点:集合的包含关系判断及应用.专题:计算题.分析:根据题中条件:“B⊆A”,得到B是A的子集,故集合B可能是∅或B={﹣1},或{1},由此得出方程ax+1=0无解或只有一个解x=1或x=﹣1.从而得出a的值即可.解答:解:由于B⊆A,∴B=∅或B={﹣1},或{1},∴a=0或a=1或a=﹣1,∴实数a的所有可能取值的集合为{﹣1,0,1}故选D.点评:本题主要考查了集合的包含关系判断及应用,方程的根的概念等基本知识,考查了分类讨论的思想方法,属于基础题.3.(5分)(2022•惠州模拟)若a∈R,则“a=3”是“a2=9”的(  )条件. A.充分而不必要B.必要而不充分 C.充要D.既不充分又不必要考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:先判断出“a=3”成立能推出“a2=9”成立,因为“a2=9时a=±3,通过举例子a=﹣3成立推不出“a=3”成立,利用充要条件的有关定义得到结论.14解答:解:已知a∈R,则a=3⇒a2=9;∵a2=9,可得a=±3,当a=﹣3时,满足a2=9,推不出a=3,∴“a=3”是“a2=9”的充分而不必要条件,故选A;点评:本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断,但解题的关键是知道一个正数的平方根有两个; 4.(5分)(2022•广东)下列函数为偶函数的是(  ) A.y=sinxB.y=x3C.y=exD.考点:函数奇偶性的判断.专题:计算题.分析:结合选项,逐项检验是否满足f(﹣x)=f(x),即可判断解答:解:A:y=sinx,则有f(﹣x)=sin(﹣x)=﹣sinx为奇函数B:y=x3,则有f(﹣x)=(﹣x)3=﹣x3=﹣f(x)为奇函数,C:y=ex,则有f(﹣x)=,为非奇非偶函数.D:y=ln,则有F(﹣x)=ln=f(x)为偶函数故选D点评:本题主要考查了函数的奇偶行的判断,解题的关键是熟练掌握基本定义 5.(5分)(2022•惠州模拟)已知向量=(2,﹣3),=(x,6),,则|的值为(  ) A.B.C.5D.13考点:平面向量数量积的坐标表示、模、夹角;平面向量共线(平行)的坐标表示.专题:计算题.分析:根据向量共线定理和已知条件可得﹣3x=12,从而求出x的值,并代入|,即可求得结果.解答:解:∵向量=(2,﹣3),=(x,6),﹣3x=12,解得x=﹣4.∴=(﹣2,3)|=.故选B.点评:此题是个基础题.考查向量的模和共线向量定理,同时考查学生的计算能力.14 6.(5分)(2022•惠州模拟)设{an}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=(  ) A.120B.105C.90D.75考点:等比数列.分析:先由等差数列的性质求得a2,再由a1a2a3=80求得d即可.解答:解:{an}是公差为正数的等差数列,∵a1+a2+a3=15,a1a2a3=80,∴a2=5,∴a1a3=(5﹣d)(5+d)=16,∴d=3,a12=a2+10d=35∴a11+a12+a13=105故选B.点评:本题主要考查等差数列的运算. 7.(5分)(2022•湖南模拟)已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为(  ) A.x2﹣=1B.x2﹣y2=15C.﹣y2=1D.﹣=1考点:双曲线的简单性质;双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:求出抛物线的焦点坐标,利用双曲线的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,建立方程组,求出几何量,即可求得双曲线的标准方程.解答:解:抛线线y2=4x的焦点(,0)∴c2=a2+b2=10,e==.∴a=3,b=1,∴该双曲线的方程为.故选C.点评:本题考查抛物线的性质,考查双曲线的标准方程,考查学生的计算能力,属于基础题. 8.(5分)(2022•惠州模拟)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是(  )14 A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n考点:平面与平面平行的判定.专题:证明题.分析:通过举反例可得A、B、C不正确,根据垂直于同一个平面的两条直线平行,可得D正确,从而得出结论.解答:解:A不正确.因为m,n平行于同一个平面,故m,n可能相交,可能平行,也可能是异面直线.B不正确.因为α,β垂直于同一个平面γ,故α,β可能相交,可能平行.C不正确.因为α,β平行与同一条直线m,故α,β可能相交,可能平行.D正确.因为垂直于同一个平面的两条直线平行.故选D.点评:本题考查两个平面平行的判定和性质,平面与平面垂直的性质,线面垂直的性质,注意考虑特殊情况,属于中档题. 9.(5分)(2022•惠州模拟)已知幂函数y=f(x)的图象过点(,),则log4f(2)的值为(  ) A.B.﹣C.2D.﹣2考点:幂函数图象及其与指数的关系;对数的运算性质;函数的零点.专题:函数的性质及应用.分析:先利用待定系数法将点的坐标代入解析式求出函数解析式,再将x用2代替求出函数值.解答:解:由设f(x)=xa,图象过点(,),∴()a=,解得a=,∴log4f(2)=log42=.故选A.点评:本题考查利用待定系数法求函数解析式、知函数解析式求函数值. 10.(5分)(2022•惠州模拟)如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致为(  )14 A.B.C.D.考点:正弦函数的图象.专题:压轴题;数形结合.分析:根据题意和图形取AP的中点为D,设∠DOA=θ,在直角三角形求出d的表达式,根据弧长公式求出l的表达式,再用l表示d,根据解析式选出答案.解答:解:如图:取AP的中点为D,设∠DOA=θ,则d=2sinθ,l=2θR=2θ,∴d=2sin,根据正弦函数的图象知,C中的图象符合解析式.故选C.点评:本题考查了正弦函数的图象,需要根据题意和弧长公式,表示出弦长d和弧长l的解析式,考查了分析问题和解决问题以及读图能力. 二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分),必做题:第11至13题为必做题,每道试题考生都必须作答,选做题:14~15题,考生只能从中选做一题;两道题都做的,只计第14题的分.11.(5分)(2022•惠州模拟)sin()=,则sinα= 或 .考点:两角和与差的正弦函数;同角三角函数间的基本关系.专题:三角函数的求值.分析:利用两角和与差的正弦函数公式及特殊角的三角函数值化简后求出sinα+cosα的值,平方后利用同角三角函数间的基本关系求出sin2α的值,再利用完全平方公式变形后求出sinα﹣cosα的值,即可求出sinα的值.解答:解:∵sin(α+)=sinα+cosα=,14∴sinα+cosα=①,两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+sin2α=,即sin2α=﹣,∴(sinα﹣cosα)2=sin2α﹣2sinαcosα+cos2α=1﹣sin2α=,∴sinα﹣cosα=②或sinα﹣cosα=﹣③,联立①②、①③解得:sinα=或.故答案为:或点评:此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及完全平方公式的运用,熟练掌握公式是解本题的关键. 12.(5分)(2022•惠州模拟)已知则z=3x+y的最大值为 9 .考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABO及其内部,再将目标函数z=3x+y对应的直线进行平移,可得当x=3,y=0时,z=3x+y取得最大值为9.解答:解:作出不等式组表示的平面区域得到如图的△AB0及其内部,其中A(3,0),B(,),O(0,0)设z=F(x,y)=3x+y,将直线l:z=3x+y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值=F(3,0)=3×3+0=9故答案为:9点评:14本题给出二元一次不等式组,求目标函数z=3x+y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题. 13.(5分)(2022•济宁二模)阅读如图的程序框图.若输入n=5,则输出k的值为 3 .考点:循环结构.专题:操作型.分析:按照程序框图的流程写出前几次循环的结果;直到满足判断框中的条件,执行输出.解答:解:经过第一次循环得到的结果为k=0,n=16,此时不满足退出循环的条件,经过第二次循环得到的结果为k=1,n=49,此时不满足退出循环的条件,经过第三次循环得到的结果为k=2,n=148,此时不满足退出循环的条件,经过第四次循环得到的结果为k=3,n=445,满足判断框中的条件,执行“是”输出的k为3故答案为:3点评:本题考查解决程序框图中的循环结构时,常采用写出前几次的循环结果找规律. 14.(5分)(2022•惠州模拟)在极坐标中,直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为  .考点:简单曲线的极坐标方程.专题:选作题.分析:先将极坐标方程化为直角坐标系方程,联立求出其交点,再使用两点间的距离公式即可.解答:解:将直线2ρcosθ=1化为普通方程为:2x=1.∵ρ=2cosθ,∴ρ2=2ρcosθ,化为普通方程为:x2+y2=2x,即(x﹣1)2+y2=1.14联立得解得,∴直线与圆相交的弦长==.故答案为.点评:本题考查了极坐标系下的直线与圆相交的弦长问题,将极坐标方程化为直角坐标系方程是常用方法. 15.(2022•天津)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为  .考点:与圆有关的比例线段.专题:计算题;压轴题.分析:由相交弦定理求出FC,由相似比求出BD,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD求解.解答:解:由相交弦定理得到AF•FB=EF•FC,即3×1=×FC,FC=2,在△ABD中AF:AB=FC:BD,即3:4=2:BD,BD=,设DC=x,则AD=4x,再由切割线定理,BD2=CD•AD,即x•4x=()2,x=故答案为:点评:本题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质. 三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)(2022•惠州模拟)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目.(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率.14考点:古典概型及其概率计算公式;分层抽样方法.专题:概率与统计.分析:(1)先求出每个个体被抽到的概率,再用各个层的个体数乘以此概率,即得应从小学、中学、大学中分别抽取的学校数目.(2)根据所有的抽法共有=15种,其中抽取的2所学校均为小学的方法有=3种,由此求得抽取的2所学校均为小学的概率.解答:解:(1)每个个体被抽到的概率等于=,故从小学、中学、大学中分别抽取的学校数目为21×=3,14×=2,7×=1.…(3分)(2)所有的抽法共有=15种,其中抽取的2所学校均为小学的方法有=3种,故抽取的2所学校均为小学的概率等于=.点评:本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题. 17.(12分)(2022•惠州模拟)已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).(1)求函数f(x)的最小正周期;(2)若函数的图象关于直线对称,求φ的值.考点:三角函数的周期性及其求法;函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:(1)先根据三角函数的两角和与差的正弦公式化简为y=Asin(wx+ρ)的形式,根据T=可得答案.(2)先表示出函数的解析式,根据三角函数的对称性可得到答案.解答:(1)解:∵f(x)=sin(x+φ),∴函数f(x)的最小正周期为2π.(2)解:∵函数,又y=sinx的图象的对称轴为(k∈Z),令,将代入,得(k∈Z).14∵0<φ<π,∴.点评:本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力 18.(14分)(2022•惠州模拟)如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别为DD1、DB的中点.(1)求证:EF∥平面ABC1D1;(2)求证:EF⊥B1C;(3)求三棱锥的体积.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的性质.专题:计算题.分析:(1)欲证EF∥平面ABC1D1,根据直线与平面平行的判定定理可知只需证EF与平面ABC1D1内一直线平行,连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,根据中位线定理可知EF∥D1B,满足定理所需条件;(2)先根据线面垂直的判定定理证出B1C⊥平面ABC1D1,而BD1⊂平面ABC1D1,根据线面垂直的性质可知B1C⊥BD1,而EF∥BD1,根据平行的性质可得结论;(3)可先证CF⊥平面EFB1,根据勾股定理可知∠EFB1=90°,根据等体积法可知=VC﹣B1EF,即可求出所求.解答:解:(1)证明:连接BD1,如图,在△DD1B中,E、F分别为D1D,DB的中点,则平面ABC1D1.(2)(3)∵CF⊥平面BDD1B1,∴CF⊥平面EFB1且,∵,,14∴EF2+B1F2=B1E2即∠EFB1=90°,∴==点评:本题主要考查了线面平行的判定,以及线面垂直的性质和三棱锥体积的计算,同时考查了空间想象能力、运算求解能力、转化与划归的思想,属于中档题. 19.(14分)(2022•惠州模拟)已知向量=(an,2n),=(2n+1,﹣an+1),n∈N*,向量与垂直,且a1=1(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=log2an+1,求数列{an•bn}的前n项和Sn.考点:数量积判断两个平面向量的垂直关系;等差数列的通项公式;等比数列的前n项和;数列的求和.专题:等差数列与等比数列.分析:(1)由向量与垂直,得2nan+1=2n+1an,∴{an}是以1为首项,2为公比的等比数列,利用等比数列的通项公式可求an(2)由an•bn=n•2n﹣1,则Sn=1+2×2+3×22+…+(n﹣1)×2n﹣2+n×2n﹣1,利用错位相减法可求其和.解答:解:(1)∵向量与垂直,∴2nan+1﹣2n+1an=0,即2nan+1=2n+1an,…(2分)∴=2∴{an}是以1为首项,2为公比的等比数列…(4分)∴a=2n﹣1.…(5分)(2)∵bn=log2a2+1,∴bn=n∴an•bn=n•2n﹣1,…(8分)∴Sn=1+2×2+3×22+…+(n﹣1)×2n﹣2+n×2n﹣1…①∴2Sn=1×2+2×22+…(n﹣1)×2n﹣1+n×2n…②…(10分)由①﹣②得,﹣Sn=1+2+22+…+2n﹣1﹣n×2n==(1﹣n)•2n=(1﹣n)2n﹣1…(12分)∴Sn=1﹣(n+1)2n+n•2n+1=1+(n﹣1)•2n.…(14分)点评:本题主要利用数列的递推公式求解数列的通项公式,等比数列的通项公式的应用,数列求和的错位相减的应用,属于综合试题. 1420.(14分)(2022•山东)如图,椭圆的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:计算题;压轴题;转化思想.分析:(Ⅰ)通过椭圆的离心率,矩形的面积公式,直接求出a,b,然后求椭圆M的标准方程;(Ⅱ)通过,利用韦达定理求出|PQ|的表达式,通过判别式推出的m的范围,①当时,求出取得最大值.利用由对称性,推出,取得最大值.③当﹣1≤m≤1时,取得最大值.求的最大值及取得最大值时m的值.解答:解:(I)…①矩形ABCD面积为8,即2a•2b=8…②由①②解得:a=2,b=1,∴椭圆M的标准方程是.(II),由△=64m2﹣20(4m2﹣4)>0得.设P(x1,y1),Q(x2,y2),则,14.当l过A点时,m=1,当l过C点时,m=﹣1.①当时,有,,其中t=m+3,由此知当,即时,取得最大值.②由对称性,可知若,则当时,取得最大值.③当﹣1≤m≤1时,,,由此知,当m=0时,取得最大值.综上可知,当或m=0时,取得最大值.点评:本题考查椭圆的标准方程,直线与圆锥曲线的综合问题,考查分类讨论思想,转化思想,韦达定理以及判别式的应用,设而不求的解题方法,考查分析问题解决问题,计算能力. 21.(14分)(2022•惠州模拟)已知函数f(x)=x3﹣3ax(a∈R)(1)当a=1时,求f(x)的极小值;(2)若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,求a的取值范围;(3)设g(x)=|f(x)|,x∈[﹣1,1],求g(x)的最大值F(a)的解析式.考点:利用导数研究函数的单调性;导数的几何意义.专题:综合题.分析:(1)由f(x)=x3﹣3ax,得f′(x)=3x2﹣3a,当f′(x)>0,f′(x)<0时,分别得到f(x)的单调递增区间、单调递减区间,由此可以得到极小值为f(1)=﹣2.(2)要使直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,只需令直线的斜率﹣1小于f(x)的切线的最小值即可,也就是﹣1<﹣3a.(3)由已知易得g(x)为[﹣1,1]上的偶函数,只需求在[0,1]上的最大值F(a).有必要对a进行讨论:①当a≤0时,f′(x)≥0,得F(a)=f(1)=1﹣3a;②当a≥1时,f(x)≤0,且f(x)在[0,1]上单调递减,得g(x)=﹣f(x),则F(a)=﹣f(1)=3a﹣1;当0<a<1时,得f(x)在[0,]上单调递减,在[,1]上单调递增.当f(1)≤0时,f(x)≤0,所以得g(x)=﹣f(x),F(a)=﹣f()=2a,当f(1)>0,需要g(x)在x=14处的极值与f(1)进行比较大小,分别求出a的取值范围,即综上所述求出F(a)的解析式.解答:解:(1)∵当a=1时,f′(x)=3x2﹣3,令f′(x)=0,得x=﹣1或x=1,当f′(x)<0,即x∈(﹣1,1)时,f(x)为减函数;当f′(x)>0,即x∈(﹣∞,﹣1],或x∈[1,+∞)时,f(x)为增函数.∴f(x)在(﹣1,1)上单调递减,在(﹣∞,﹣1],[1,+∞)上单调递增∴f(x)的极小值是f(1)=﹣2(2)∵f′(x)=3x2﹣3a≥﹣3a,∴要使直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,当且仅当﹣1<﹣3a时成立,∴(3)因g(x)=|f(x)|=|x3﹣3ax|在[﹣1,1]上是偶函数,故只要求在[0,1]上的最大值①当a≤0时,f′(x)≥0,f(x)在[0,1]上单调递增且f(0)=0,∴g(x)=f(x),F(a)=f(1)=1﹣3a.②当a>0时,,(ⅰ)当时,g(x)=|f(x)|=﹣f(x),﹣f(x)在[0,1]上单调递增,此时F(a)=﹣f(1)=3a﹣1(ⅱ)当时,当f′(x)>0,即x>或x<﹣时,f(x)单调递增;当f′(x)<0,即﹣<x<时,f(x)单调递减.所以,在单调递增.1°当时,,;2°当(ⅰ)当(ⅱ)当综上所述点评:本题综合性较强,主要考查导数的单调性、极值、最值等函数基础知识,尤其第三小题,考查带有参数的函数题型,更是值得推敲,希望在平时,多加练习,掌握其要领. 14

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-25 20:42:14 页数:14
价格:¥3 大小:221.66 KB
文章作者:U-336598

推荐特供

MORE