首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
河南信阳市息县一中高三月考理科数学
河南信阳市息县一中高三月考理科数学
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/21
2
/21
剩余19页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022-2022学年河南省信阳市息县一中高三(上)第三次段考数学试卷(理科) 一、选择题:本大题共12个小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4},B={n|n=log2(3k﹣1),k∈A},则A∩B=( )A.{3}B.{1}C.{1,3}D.{1,2,3}2.已知复数z=﹣2i+,则复数z的共轭复数在复平面内对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限3.以(a,1)为圆心,且与两条直线2x﹣y+4=0与2x﹣y﹣6=0同时相切的圆的标准方程为( )A.(x﹣1)2+(y﹣1)2=5B.(x+1)2+(y+1)2=5C.(x﹣1)2+y2=5D.x2+(y﹣1)2=54.已知||=,•=﹣,且(﹣)•(+)=﹣15,则向量与的夹角为( )A.B.C.D.5.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )A.6+B.8+C.4+D.4+6.已知函数f(x)的图象是连续不断的,有如下的x,f(x)的对应表:x123456f(x)136.1315.552﹣3.9210.88﹣52.488﹣232.064则函数f(x)存在零点的区间有( )A.区间[1,2]和[2,3]B.区间[2,3]和[3,4]C.区间[3,4]、[4,5]和[5,6]D.区间[2,3]、[3,4]和[4,5]7.执行如图所示的程序框图,如果输入的P=2,Q=1,则输出的M等于( )20/21A.37B.30C.24D.198.已知α为锐角,若sin2α+cos2α=﹣,则tanα=( )A.3B.2C.D.9.定义在R上的函数f(x)满足f(x+2)+f(x)=0,x∈[0,2)时,f(x)=3x﹣1,则f(2022)的值为( )A.8B.0C.2D.﹣210.把函数y=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度,所得的曲线的一部分图象如图所示,则ω、φ的值分别是( )A.1,B.1,﹣C.2,D.2,﹣11.已知函数f(x)的图象如图所示,则f(x)的解析式可能是( )A.f(x)=﹣x3B.f(x)=+x3C.f(x)=﹣x3D.f(x)=+x312.对函数f(x),在使f(x)≥M成立的所有常数M中,我们把M的最大值叫做函数f(x)的下确界.现已知定义在R上的偶函数f(x)满足f(1﹣x)=f(1+x),当x∈[0,1]时,f(x)=﹣3x2+2,则f(x)的下确界为( )A.2B.1C.0D.﹣1 二、填空题(每题5分,满分20分,将答案填在答题纸上)20/2113.半径为的球的体积与一个长、宽分别为6、4的长方体的体积相等,则长方体的表面积为 .14.在△ABC中,边AB的垂直平分线交边AC于D,若C=,BC=8,BD=7,则△ABC的面积为 .15.6月23日15时前后,江苏盐城市阜宁、射阳等地突遭强冰雹、龙卷风双重灾害袭击,风力达12级.灾害发生后,有甲、乙、丙、丁4个轻型救援队从A,B,C,D四个不同的方向前往灾区.已知下面四种说法都是正确的.(1)甲轻型救援队所在方向不是C方向,也不是D方向;(2)乙轻型救援队所在方向不是A方向,也不是B方向;(3)丙轻型救援队所在方向不是A方向,也不是B方向;(4)丁轻型救援队所在方向不是A方向,也不是D方向.此外还可确定:如果丙所在方向不是D方向,那么甲所在方向就不是A方向.有下列判断:①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.其中判断正确的序号是 .16.函数f(x)=lnx在点P(x0,f(x0))处的切线l与函数g(x)=ex的图象也相切,则满足条件的切点P的个数有 个. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知各项都为正数的等比数列{an}满足a3是3a1与2a2的等差中项,且a1a2=a3.(I)求数列{an}的通项公式;(II)设bn=log3an,且Sn为数列{bn}的前n项和,求数列{}的前n项和Tn.18.(12分)某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图:(I)写出a的值;20/21(II)在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取3人,并用X表示其中男生的人数,求X的分布列和数学期望.19.(12分)如图,已知等边△ABC中,E,F分别为AB,AC边的中点,N为BC边上一点,且CN=BC,将△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M为EF中点.(1)求证:平面A′MN⊥平面A′BF;(2)求二面角E﹣A′F﹣B的余弦值.20.(12分)已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有>0.(1)证明:f(x)在[﹣1,1]上是增函数;(2)解不等式f(x2﹣1)+f(3﹣3x)<0.21.(12分)已知函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x﹣1,(1)当x∈[1,2]时,求f(x)的解析式;(2)计算f(0)+f(1)+f(2)+…+f(2022)的值. [选修4-1:几何证明选讲]22.(10分)如图所示,PQ为⊙O的切线,切点为Q,割线PEF过圆心O,且QM=QN.(Ⅰ)求证:PF•QN=PQ•NF;(Ⅱ)若QP=QF=,求PF的长. [选修4-4:坐标系与参数方程]23.已知圆C在极坐标方程为ρ=4cosθ﹣2sinθ,直线l的参数方程为(t为参数).若直线l与圆C相交于不同的两点P,Q.(Ⅰ)写出圆C的直角坐标方程,并求圆心的坐标与半径;(Ⅱ)若弦长|PQ|=4,求直线l的斜率.20/21 [选修4-5:不等式选讲]24.设f(x)=|x|+|x+10|.(Ⅰ)求f(x)≤x+15的解集M;(Ⅱ)当a,b∈M时,求证:5|a+b|≤|ab+25| 20/212022-2022学年河南省信阳市息县一中高三(上)第三次段考数学试卷(理科)参考答案与试题解析 一、选择题:本大题共12个小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•邯郸月考)已知集合A={1,2,3,4},B={n|n=log2(3k﹣1),k∈A},则A∩B=( )A.{3}B.{1}C.{1,3}D.{1,2,3}【考点】交集及其运算.【专题】集合思想;综合法;集合.【分析】分别求出满足条件的集合B中的部分元素,求出A∩B即可.【解答】解:k=1时,n=1,k=3时,n=3,∴B={1,3,…},而A={1,2,3,4},故A∩B={1,3},故选:C.【点评】本题考查了集合的运算,考查对数的运算,是一道基础题. 2.(2022秋•秀屿区校级期中)已知复数z=﹣2i+,则复数z的共轭复数在复平面内对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【专题】转化思想;数系的扩充和复数.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:复数z=﹣2i+=﹣2i+=﹣2i﹣3i﹣1=﹣1﹣5i,则复数z的共轭复数=﹣1+5i在复平面内对应的点(﹣1,5)在第二象限.故选:B.【点评】本题考查了复数的运算法则、共轭复数的定义、几何意义,考查了推理能力与计算能力,属于基础题. 3.(2022秋•河南月考)以(a,1)为圆心,且与两条直线2x﹣y+4=0与2x﹣y﹣6=0同时相切的圆的标准方程为( )A.(x﹣1)2+(y﹣1)2=5B.(x+1)2+(y+1)2=5C.(x﹣1)2+y2=5D.x2+(y﹣1)2=5【考点】圆的标准方程.【专题】计算题;方程思想;综合法;直线与圆.【分析】由题意,圆心在直线2x﹣y﹣1=0上,求出圆心与半径,即可得出结论.【解答】解:由题意,圆心在直线2x﹣y﹣1=0上,20/21(a,1)代入可得a=1,即圆心为(1,1),半径为r==,∴圆的标准方程为(x﹣1)2+(y﹣1)2=5,故选:A.【点评】本题考查圆的方程,考查学生的计算能力,比较基础. 4.(2022秋•邯郸月考)已知||=,•=﹣,且(﹣)•(+)=﹣15,则向量与的夹角为( )A.B.C.D.【考点】平面向量数量积的运算.【专题】转化思想;综合法;平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得向量与的夹角的余弦值,可得向量与的夹角.【解答】解:设向量与的夹角为θ,∵||=,•=•||•cosθ=﹣①,∵(﹣)•(+)=﹣=10﹣=﹣15,∴||=5.再把||=5代入①求得cosθ=﹣,∴θ=,故选:C.【点评】本题主要考查两个向量的数量积的定义,属于基础题. 5.(2022秋•河南月考)如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )A.6+B.8+C.4+D.4+【考点】由三视图求面积、体积.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】几何体为两个半圆锥与一个四棱柱的组合体,求出各部分的体积再相加即可.20/21【解答】解:由三视图可知几何体为两个半圆锥与一个长方体的组合体.半圆锥的底面半径r=1,高为2,长方体的棱长为1,2,2,∴几何体的体积V=×2+1×2×2=+4.故选C.【点评】本题考查了常见几何体的三视图及体积计算,属于中档题. 6.(2022春•潍坊期末)已知函数f(x)的图象是连续不断的,有如下的x,f(x)的对应表:x123456f(x)136.1315.552﹣3.9210.88﹣52.488﹣232.064则函数f(x)存在零点的区间有( )A.区间[1,2]和[2,3]B.区间[2,3]和[3,4]C.区间[3,4]、[4,5]和[5,6]D.区间[2,3]、[3,4]和[4,5]【考点】二分法的定义.【专题】综合题;方程思想;综合法;函数的性质及应用.【分析】利用根的存在性定理:f(x)的图象在区间[a,b]上连续,且f(a)•f(b)<0,则f(x)在(a,b)上有根.结合题中的表求出函数f(x)存在零点的区间.【解答】解:据根的存在性定理知:f(x)的图象在区间[a,b]上连续,且f(a)•f(b)<0,则f(x)在(a,b)上有根.∵f(x)的图象是连续不断的,∴由表知,f(2)•f(3)<0,f(4)•f(3)<0,f(4)•f(5)<0,∴函数f(x)存在零点的区间为[2,3]、[3,4]和[4,5],故选:D.【点评】本题考查利用根的存在性定理判断函数的零点所在的区间,考查学生运用二分法的定义解题的能力,属于基础题. 7.(2022秋•河南月考)执行如图所示的程序框图,如果输入的P=2,Q=1,则输出的M等于( )A.37B.30C.24D.19【考点】程序框图.【专题】计算题;图表型;试验法;算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量M的值,模拟程序的运行,对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:模拟程序的运行,可得:P=2,Q=1M=10,N=1M=12,N=1不满足条件M≤N,执行循环体,P=3,Q=2,M=15,N=220/21不满足条件M≤N,执行循环体,P=4,Q=3,M=19,N=6不满足条件M≤N,执行循环体,P=5,Q=4,M=24,N=24满足条件M≤N,推出循环,输出M的值为24.故选:C.【点评】本题考查了循环结构的程序框图的应用,考查了学生的视图能力以及观察、推理的能力,属于基础题. 8.(2022秋•邯郸月考)已知α为锐角,若sin2α+cos2α=﹣,则tanα=( )A.3B.2C.D.【考点】三角函数的化简求值.【专题】计算题;转化思想;三角函数的求值.【分析】利用同角三角函数基本关系式化简已知条件为正切函数的形式,然后求解即可.【解答】解:α为锐角,tanα>0,若sin2α+cos2α=﹣,可得,即:=,可得2tan2α﹣5tanα﹣3=0,解得tanα=3,tan(舍去).故选:A.【点评】本题考查三角函数化简求值,同角三角函数基本关系式的应用,考查计算能力. 9.(2022秋•周口月考)定义在R上的函数f(x)满足f(x+2)+f(x)=0,x∈[0,2)时,f(x)=3x﹣1,则f(2022)的值为( )A.8B.0C.2D.﹣2【考点】函数的周期性.【专题】方程思想;转化思想;函数的性质及应用.【分析】函数f(x)满足f(x+2)+f(x)=0,可得:f(x+4)=﹣f(x+2)=f(x),f(2022)=f(3)=﹣f(1),即可得出.【解答】解:∵函数f(x)满足f(x+2)+f(x)=0,∴f(x+4)=﹣f(x+2)=f(x),∴f(2022)=f(503×4+3)=f(3)=﹣f(1),∵x∈[0,2)时,f(x)=3x﹣1,∴f(1)=3﹣1=2.则f(2022)=﹣2.故选:D.20/21【点评】本题考查了函数的周期性、函数求值,考查了推理能力与计算能力,属于中档题. 10.(2022•弋江区校级一模)把函数y=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度,所得的曲线的一部分图象如图所示,则ω、φ的值分别是( )A.1,B.1,﹣C.2,D.2,﹣【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题.【分析】先把函数的图象依题意向左平移,获得新的函数的解析式,然后利用图象可知函数的周期,进而利用周期公式求得ω;把x=π代入函数解析式,化简整理求得φ的值.【解答】解:y=sin(ωx+φ),y1=sin[ω(x+)+φ],∴T==×4,ω=2,当x=π时,2(π+)+φ=2kπ+π,k∈Z,φ=2kπ﹣,k∈Z,|φ|<,∴φ=﹣.故选D【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式.考查了学生数形结合思想的运用和对三角函数解析式的理解. 11.(2022•厦门模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是( )A.f(x)=﹣x3B.f(x)=+x3C.f(x)=﹣x3D.f(x)=+x320/21【考点】函数的图象.【专题】函数的性质及应用.【分析】本题是选择题,可采用排除法,根据函数的定义域可排除选项C再根据特殊值排除B,D,即可得到所求【解答】解:由图象可知,函数的定义域为x≠a,a>0,故排除C,当x→+∞时,y→0,故排除B,当x→﹣∞时,y→+∞,故排除B,当x=1时,对于选项A.f(1)=0,对于选项D,f(1)=﹣2,故排除D.故选:A.【点评】本题主要考查了识图能力,数形结合的思想,属于基础题 12.(2022秋•息县校级月考)对函数f(x),在使f(x)≥M成立的所有常数M中,我们把M的最大值叫做函数f(x)的下确界.现已知定义在R上的偶函数f(x)满足f(1﹣x)=f(1+x),当x∈[0,1]时,f(x)=﹣3x2+2,则f(x)的下确界为( )A.2B.1C.0D.﹣1【考点】抽象函数及其应用;函数的最值及其几何意义.【专题】数形结合;函数的性质及应用.【分析】由题意可得f(x)关于x=0,x=1对称;从而作出函数f(x)的图象,从而由定义确定下确界即可.【解答】解:由题意知,f(x)关于x=0,x=1对称;故函数f(x)的周期为2,又∵当x∈[0,1]时,f(x)=﹣3x2+2,∴当x∈[﹣1,1]时,f(x)=﹣3x2+2;故作出函数f(x)在R上的部分图象如下,故易得下确界为f(1)=﹣1,故选D.【点评】本题考查了函数性质的判断与应用,同时考查了数形结合的思想应用及学生对新定义的接受能力,属于中档题. 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(2022秋•邯郸月考)半径为的球的体积与一个长、宽分别为6、4的长方体的体积相等,则长方体的表面积为 88 .【考点】棱柱、棱锥、棱台的侧面积和表面积.【专题】计算题;转化思想;空间位置关系与距离.【分析】由题意,长、宽分别为6、4的长方体的体积与球的体积相等,求出长方体的高,再求长方体的表面积.20/21【解答】解:由题意,长、宽分别为6、4的长方体的体积与球的体积相等,球的半径为.则有:⇔解得h=2长方体的表面积S=2×4×6+2×2×4+2×2×6=88故答案为88.【点评】本题考查了球的体积的计算和长方体的体积计算.属于基础题. 14.(2022秋•金安区校级月考)在△ABC中,边AB的垂直平分线交边AC于D,若C=,BC=8,BD=7,则△ABC的面积为 20,或24 .【考点】三角形中的几何计算.【专题】数形结合;方程思想;转化思想;解三角形.【分析】如图所示,△BCD中,设CD=x,由余弦定理可得:,解出x,再利用三角形面积计算公式即可得出.【解答】解:如图所示,△BCD中,设CD=x,由余弦定理可得:,化为:x2﹣8x+15=0,解得x=3,或5.∴AC=10,或12.∴S△ABC=sinC=20,或24.故答案为:20,或24.【点评】本题考查了余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 15.(2022秋•河南月考)6月23日15时前后,江苏盐城市阜宁、射阳等地突遭强冰雹、龙卷风双重灾害袭击,风力达12级.灾害发生后,有甲、乙、丙、丁4个轻型救援队从A,B,C,D四个不同的方向前往灾区.已知下面四种说法都是正确的.20/21(1)甲轻型救援队所在方向不是C方向,也不是D方向;(2)乙轻型救援队所在方向不是A方向,也不是B方向;(3)丙轻型救援队所在方向不是A方向,也不是B方向;(4)丁轻型救援队所在方向不是A方向,也不是D方向.此外还可确定:如果丙所在方向不是D方向,那么甲所在方向就不是A方向.有下列判断:①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.其中判断正确的序号是 ③ .【考点】进行简单的合情推理.【专题】整体思想;综合法;推理和证明.【分析】由(1)可知,甲选A或B,由(2)可知,乙选C或D,由(3)可知:丙选C或D,由(4)可知,丁选C或B,由如果丙所在方向不是D方向,那么甲所在方向就不是A方向可知丙所在的方向是D方向.【解答】解:由(1)可知,甲选A或B,由(2)可知,乙选C或D,由(3)可知:丙选C或D,由(4)可知,丁选C或B,由丙所在方向不是D方向,那么甲所在方向就不是A方向,故丙所在的方向是D方向,故③正确,故答案为:③.【点评】本题考查简单的合情推理,考查逻辑推理应用,考查学生的逻辑思考能力,属于基础题. 16.(2022秋•邯郸月考)函数f(x)=lnx在点P(x0,f(x0))处的切线l与函数g(x)=ex的图象也相切,则满足条件的切点P的个数有 2 个.【考点】利用导数研究曲线上某点切线方程.【专题】综合题;转化思想;演绎法;导数的综合应用.【分析】先求直线l为函数的图象上一点A(x0,f(x0))处的切线方程,再设直线l与曲线y=g(x)相切于点(x1,),进而可得lnx0=,即可得出结论.【解答】解:∵f(x)=lnx,∴f′(x)=,∴x=x0,f′(x0)=,∴切线l的方程为y﹣lnx0=(x﹣x0),即y=x+lnx0﹣1,①设直线l与曲线y=g(x)相切于点(x1,),∵g'(x)=ex,∴=,∴x1=﹣lnx0.20/21∴直线l也为y﹣=(x+lnx0)即y=x++,②由①②得lnx0=,如图所示,方程有两解,故答案为2.【点评】本题以函数为载体,考查导数知识的运用,考查曲线的切线,同时考查零点存在性定理,综合性比较强. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2022秋•邯郸月考)已知各项都为正数的等比数列{an}满足a3是3a1与2a2的等差中项,且a1a2=a3.(I)求数列{an}的通项公式;(II)设bn=log3an,且Sn为数列{bn}的前n项和,求数列{}的前n项和Tn.【考点】数列的求和;数列递推式.【专题】综合题;转化思想;转化法;等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义和等差中项即可求出{an}的通项公式,(Ⅱ)根据对数的性质得到bn=log3an=n,再根据等差数列的前n项公式得到Sn,代入到,裂项求和即可.20/21【解答】解:(I)设等比数列的公比为q,由题意知q>0,且3a1+2a2=a3,a1a2=a3.∴解得a1=q=3,故an=3n,(Ⅱ)bn=log3an=n,∴Sn=,∴=+2=2(﹣)+2,故数列{}的前n项和为Tn=2[(1﹣)+(﹣)+…+(﹣)]+2n=2(1﹣)+2n=【点评】本题考查了等差数列的性质和前n项和公式和等比数列的通项公式和裂项求和,属于中档题. 18.(12分)(2022秋•息县校级月考)某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图:(I)写出a的值;(II)在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取3人,并用X表示其中男生的人数,求X的分布列和数学期望.【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】计算题;转化思想;综合法;概率与统计.【分析】(I)由频率分布的性质能求出a.(II)在抽取的女生中,月上网次数不少于20次的学生人数为人,在抽取的男生中,月上网次数不少于20次的学生人数为3人,从而得到X的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X).【解答】解:(I)由频率分布的性质得:20/21a==0.05.…(3分)(II)在抽取的女生中,月上网次数不少于20次的学生频率为0.02×5=0.1,学生人数为0.1×20=2人,同理,在抽取的男生中,月上网次数不少于20次的学生人数为(0.03×5)×20=3人.故X的可能取值为1,2,3.…(6分)则P(X=1)==,P(X=2)==,P(X=3)==,所以X的分布列为:X123P…(11分)所以E(X)=.…(12分)【点评】本题考查实数值的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用. 19.(12分)(2022秋•思明区校级期中)如图,已知等边△ABC中,E,F分别为AB,AC边的中点,N为BC边上一点,且CN=BC,将△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M为EF中点.(1)求证:平面A′MN⊥平面A′BF;(2)求二面角E﹣A′F﹣B的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【专题】数形结合;转化思想;空间角.【分析】(1)如图所示,取BC的中点G,连接MG,则MG⊥EF,利用面面与线面垂直的性质与判定定理可得:MG⊥A′M,又A′M⊥EF,因此可以建立空间直角坐标系.不妨设BC=4.只要证明平面法向量的夹角为直角即可证明平面A′MN⊥平面A′BF.(2)利用两个平面的法向量的夹角即可得出.【解答】(1)证明:如图所示,取BC的中点G,连接MG,则MG⊥EF,∵平面A′EF⊥平面EFCB,平面A′EF∩平面EFCB=EF,20/21∴MG⊥平面A′EF,∴MG⊥A′M,又A′M⊥EF,因此可以建立空间直角坐标系.不妨设BC=4.M(0,0,0),A′(0,0,),N(﹣1,,0),B(2,,0),F(﹣1,0,0).=(0,0,),=(﹣1,,0),=(1,0,),=(3,,0).设平面A′MN的法向量为=(x,y,z),则,即,取=.同理可得平面A′BF的法向量=.∵=3﹣3+0=0,∴,∴平面A′MN⊥平面A′BF.(2)解:由(1)可得平面A′BF的法向量=.取平面EA′F的法向量=(0,1,0).则cos===,由图可知:二面角E﹣A′F﹣B的平面角为锐角,∴二面角E﹣A′F﹣B的平面角的余弦值为.【点评】本题考查了利用平面法向量的夹角求出二面角的方法、向量夹角公式、数量积运算性质、空间位置关系,考查了推理能力与计算能力,属于中档题. 20.(12分)(2022秋•息县校级月考)已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有>0.(1)证明:f(x)在[﹣1,1]上是增函数;(2)解不等式f(x2﹣1)+f(3﹣3x)<0.20/21【考点】函数奇偶性的性质;函数单调性的性质.【专题】计算题;函数的性质及应用.【分析】(1)任取x1、x2两数使x1、x2∈[﹣1,1],且x1<x2,进而根据函数为奇函数推知f(x1)﹣f(x2)=f(x1)+f(﹣x2),让f(x1)+f(﹣x2)除以x1﹣x2再乘以x1﹣x2配出的形式,进而判断出f(x1)﹣f(x2)与0的关系,进而证明出函数的单调性.(2)将不等式进行等价转化,利用函数的单调性进行求解.【解答】(1)证明:任取x1、x2∈[﹣1,1],且x1<x2,则﹣x2∈[﹣1,1].又f(x)是奇函数,于是f(x1)﹣f(x2)=f(x1)+f(﹣x2)=•(x1﹣x2).据已知>0,x1﹣x2<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴f(x)在[﹣1,1]上是增函数.5分(2)解:∵f(x)是定义在[﹣1,1]上的奇函数,且在[﹣1,1]上是增函数不等式化为f(x2﹣1)<f(3x﹣3),∴,解得x∈(1,].【点评】本题主要考查函数的单调性和奇偶性的综合运用.解题时要注意把未知条件拼凑出已知条件的形式,达到解题的目的. 21.(12分)(2022秋•息县校级月考)已知函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x﹣1,(1)当x∈[1,2]时,求f(x)的解析式;(2)计算f(0)+f(1)+f(2)+…+f(2022)的值.【考点】函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】(1)根据函数的对称性,即可求出当x∈[1,2]时的f(x)的解析式;(2)(根据函数的对称性和函数的奇偶性即可得到f(x)是周期函数,根据函数的周期性先计算f(0)+f(1)+f(2)+f(3)=0,然后可得f(0)+f(1)+f(2)+…+f(2022)的值.【解答】解:(1)∵f(x)的图象关于x=1对称,∴f(1+x)=f(1﹣x),即f(x)=f(2﹣x)当x∈[1,2]时,2﹣x∈[0,1],∵当x∈[0,1]时,f(x)=2x﹣1∴f(x)=f(2﹣x)=22﹣x﹣1,x∈[1,2].(2)∵f(x)的图象关于x=1对称,∴f(1+x)=f(1﹣x),20/21∵f(x)是R上的奇函数,∴f(1+x)=f(1﹣x)=﹣f(x﹣1),即f(2+x)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x)是周期为4的周期函数;∵当x∈[0,1]时,f(x)=2x﹣1∴f(0)=0,f(1)=2﹣1=1,f(2)=f(0)=0,f(3)=f(﹣1)=﹣f(1)=﹣1,f(4)=f(0)=0,∴f(0)+f(1)+f(2)+f(3)=0,即f(0)+f(1)+f(2)+…+f(2022)=504×0=0.【点评】本题考查的知识点是函数的值,奇函数,函数的周期性,其中根据已知条件求出函数是为4的周期函数,是解答本题的关键. [选修4-1:几何证明选讲]22.(10分)(2022秋•河南月考)如图所示,PQ为⊙O的切线,切点为Q,割线PEF过圆心O,且QM=QN.(Ⅰ)求证:PF•QN=PQ•NF;(Ⅱ)若QP=QF=,求PF的长.【考点】与圆有关的比例线段.【专题】选作题;转化思想;综合法;推理和证明.【分析】(I)已知条件PQ为圆O的切线,联系切线的性质、弦切角定理,利用三角形相似,可得结论;(II)求出∠PQF=120°,利用余弦定理求PF的长.【解答】(I)证明:因为PQ为圆O的切线,所以∠PFQ=∠PQE.…(1分)又因为QM=QN,所以∠QNM=∠QMN,…(2分)所以∠PNF=∠PMQ,…(3分)所以△PNF∽△PMQ,…(4分)所以,即PF•QN=PQ•NF;…(II)解:因为QP=QF=,所以∠PFQ=∠QPF.…(6分)又∠PFQ+∠QPF+∠PQE+∠EQF=180°,∠EQF=90°,…(7分)所以∠PFQ=∠QPF=30°,∠PQF=120°,…(8分)由余弦定理,得PF==3.…(10分)20/21【点评】本题考查圆周角定理、弦切角定理、余弦定理、圆的性质,以及考查逻辑四维能力、推理理论能力、转化能力、运算求解能力. [选修4-4:坐标系与参数方程]23.(2022秋•河南月考)已知圆C在极坐标方程为ρ=4cosθ﹣2sinθ,直线l的参数方程为(t为参数).若直线l与圆C相交于不同的两点P,Q.(Ⅰ)写出圆C的直角坐标方程,并求圆心的坐标与半径;(Ⅱ)若弦长|PQ|=4,求直线l的斜率.【考点】参数方程化成普通方程;坐标系的作用.【专题】对应思想;综合法;坐标系和参数方程.【分析】(Ⅰ)根据ρ2=x2+y2,ρcosθ=x,ρsinθ=y,求出C的直角坐标方程,通过配方求出圆心和半径即可;(Ⅱ)求出直线过定点M(5,0),设出直线方程,根据|PQ|=4,求出直线方程即可.【解答】解:(I)由ρ=4cosθ﹣2sinθ,得ρ2=4ρcosθ﹣2ρsinθ,将ρ2=x2+y2,ρcosθ=x,ρsinθ=y,代入可得x2+y2﹣4x+2y=0,配方,得(x﹣2)2+(y+1)2=5,所以圆心为(2,﹣1),半径为.(II)由直线L的参数方程知直线过定点M(5,0),则由题意,知直线l的斜率一定存在,因此不妨设直线l的方程为l的方程为y=k(x﹣5),因为|PQ|=4,所以5﹣=4,解得k=0或k=.【点评】本题考查了极坐标方程转化为直角坐标方程,考查求直线方程问题,是一道中档题. [选修4-5:不等式选讲]24.(2022秋•正阳县校级月考)设f(x)=|x|+|x+10|.(Ⅰ)求f(x)≤x+15的解集M;(Ⅱ)当a,b∈M时,求证:5|a+b|≤|ab+25|【考点】绝对值不等式的解法.【专题】分类讨论;转化思想;分类法;不等式的解法及应用.【分析】(I)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)当a,b∈M时,等价转化不等式5|a+b|≤|ab+25|为(a2﹣25)•(25﹣b2)≤0,结合题意可得(a2﹣25)•(25﹣b2)≤0成立,从而得出结论.【解答】解:(I)由f(x)=|x|+|x+10|≤x+15得:①,或②,或③.20/21解①求得x∈∅,解②求得﹣5≤x≤0,解③求得5≥x>0,故原不等式的解集为M={x|﹣5≤x≤5}.(II)当a,b∈M时,﹣5≤a≤5,﹣5≤b≤5,不等式5|a+b||≤|ab+25|,等价于25(a+b)2≤(ab+25)2,即25(a2+b2+2ab)≤a2•b2+50ab+625,即25a2+25b2﹣a2•b2﹣625≤0,等价于(a2﹣25)•(25﹣b2)≤0.而由﹣5≤a≤5,﹣5≤b≤5,可得a2≤25,b2≤25,∴a2﹣25≤0,25﹣b2≥0,∴(a2﹣25)•(25﹣b2)≤成立,故要证的不等式5|a+b|≤|ab+25|成立.【点评】本题主要考查绝对值不等式的解法,用分析法证明不等式,属于中档题.20/21
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
河南省信阳市息县2022年中考地理二模试题(附答案)
河南省信阳市息县2021-2022学年七年级上学期期末语文试题
河南省信阳市息县2021-2022学年八年级下学期期中语文试题
河南省信阳市息县2021-2022学年七年级下学期期中语文试题
河南省2022年上学期信阳市息县第一高级中学高三地理阶段性测试试题答案
河南省2022年上学期信阳市息县第一高级中学高三地理阶段性测试试题
河南省2022年上信阳市息县第一高级中学高三地理阶段性测试试题答案
河南省信阳市息县九年级化学上学期第二次月考试题含解析新人教版
河南省信阳市息县九年级化学上学期期中试题含解析新人教版
河南省信阳市高二期末数学试卷(理科)
文档下载
收藏
所属:
高中 - 数学
发布时间:2022-08-25 20:56:42
页数:21
价格:¥3
大小:188.34 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划