首页

1.1 等腰三角形第2课时等边三角形的性质教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

第2课时 等边三角形的性质1.进一步学习等腰三角形的相关性质,了解等腰三角形两底角的角平分线(两腰上的高,中线)的性质;2.学习等边三角形的性质,并能够运用其解决问题.(重点、难点)               一、情境导入我们欣赏下列两个建筑物(如图),图中的三角形是什么样的特殊三角形?这样的三角形我们是怎样定义的,有什么性质?二、合作探究探究点一:等腰三角形两底角的平分线(两腰上的高、中线)的相关性质如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E,求证:DE∥BC.证明:因为AB=AC,所以∠ABC=∠ACB.又因为CD⊥AB于点D,BE⊥AC于点E,所以∠AEB=∠ADC=90°,所以∠ABE=∠ACD,所以∠ABC-∠ABE=∠ACB-∠ACD,所以∠EBC=∠DCB.在△BEC与△CDB中,所以△BEC≌△CDB,所以BD=CE,所以AB-BD=AC-CE,即AD=AE,所以∠ADE=∠AED.又因为∠A是△ADE和△ABC的顶角,所以∠ADE=∠ABC,所以DE∥BC.方法总结:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等.探究点二:等边三角形的相关性质【类型一】利用等边三角形的性质求角度 如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE.若∠ABE=40°,BE=DE,求∠CED的度数.解析:因为△ABC三个内角为60°,∠ABE=40°,求出∠EBC的度数,因为BE=DE,所以得到∠EBC=∠D,求出∠D的度数,利用外角性质即可求出∠CED的度数.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠ABE=40°,∴∠EBC=∠ABC-∠ABE=60°-40°=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°.方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.【类型二】利用等边三角形的性质证明线段相等如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:BM=EM.解析:要证BM=EM,由题意证△BDM≌△EDM即可.证明:连接BD,∵在等边△ABC中,D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°.∵CE=CD,∴∠CDE=∠E.∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°.∵DM⊥BC,∴∠DMB=∠DME=90°,在△DMB和△DME中,∴△DME≌△DMB.∴BM=EM.方法总结:证明线段相等可利用三角形全等得到.还应明白等边三角形是特殊的等腰三角形,所以等腰三角形的性质完全适合等边三角形.【类型三】等边三角形的性质与全等三角形的综合运用△ABC为正三角形,点M是边BC上任意一点,点N是边CA上任意一点,且BM=CN,BN与AM相交于Q点,求∠BQM的度数.解析:先根据已知条件利用SAS判定△ABM≌△BCN,再根据全等三角形的性质求得∠AQN=∠ABC=60°.解:∵△ABC为正三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC.在△AMB和△BNC 中,∵∴△AMB≌△BNC(SAS),∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=∠ABC=60°.方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.三、板书设计1.等腰三角形两底角的平分线(两腰上的高、中线)的相关性质等腰三角形两底角的平分线相等;等腰三角形两腰上的高相等;等腰三角形两腰上的中线相等.2.等边三角形的性质等边三角形的三个内角都相等,并且每个角都等于60°.本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形.学习等边三角形的定义、性质.让学生在探索图形特征以及相关结论的活动中,进一步培养空间观念,锻炼思维能力.让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-02-12 17:00:07 页数:3
价格:¥3 大小:843.46 KB
文章作者:随遇而安

推荐特供

MORE