首页

福建省厦门市2021-2022学年高二上学期期末质量检测数学试题答案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

厦门市2021-2022学年度第一学期高二年级质量检测数学试题参考答案及评分标准一、单选题:1.D2.B3.A(选择性必修一P12,练习2)4.C(选择性必修一P140,阅读材料)5.B(选择性必修一P95,练习1)6.C(选择性必修一P34,例6)7.B(选择性必修一P36,例7)8.A二、多选题:9.BD(选择性必修一P96,例5)10.ACD(选择性必修一P103,18)11.AD(选择性必修一P44,16)12.AD三、填空题:13.(1,2−)(答案不唯一)(选择性必修一P102,1)14.yx=3n815.1−(选择性必修二P6,例4)92216.(xy−2)+(−1)=1,131−(选择性必修一P103,12)8.解析:延长AF交椭圆E于点C,连接CF,122由椭圆定义,|||AF|212AF+=a,有||AF1a=,y3AaB由椭圆对称性,得CF12FB=,所以AF11FC=2,所以||CF1=3,F1OF2xC5a再由椭圆定义:|||CF12|2CF+=a,有||CF2=,3222因为|||CF|AC||=+AF,所以=CAF90,22222222205在△AFF中,|FF||=+AF||AF|即4ca=,有离心率e=.1212129312.解析:①a−(,0]时,afa=a=−()10,nnn+n12②an(0,1)时,anfan+n1nn=an=a−aa()+=1−(1)1+0,1(),2③a(1,+)时,a=fa()=a−a+=1aa(−+1)11,nn+1nnnnn2④a=1时,afa=a=a−()+=11,nnn+n1naa−1,0,n1因此,a=n+12a−a+1,a0.nn12有a0时,aa−=−1,a0时,aa−=(1)a−,1nn+11nn+1n1对于选项A,a=(0,1),a1.1n2对于选项B,{}a为递增数列时,a0且a1.n11对于选项C,{}a为等差数列时,a0或a=1(其中,a=1时,{}a为常数列).n111n21111对于选项D,a=2,a−=1a−a,有==−,1n+1nna−1aa(−1)a−1an+1nnnn\n111所以=−,aaa−−11nnn+111111111111+++=−+−++−=−()()()aaaaaaaaaaa−−1−11−1−1−1−1−1121223111nnnn++1因为a=21,所以a1,即0,1n+1a−1n+11111所以+++=1,故选AD.aaaa−1121n16.依题意得A(2,0),C(2,2),因为M为AB中点,所以CMAM⊥,所以点M的轨迹是以AC为直径的圆,又AC中点为(2,1),AC=2,22所以点M的轨迹方程为(xy−+2−1)=1(),圆心D(2,1),因为点A(2,0)关于直线xy+=0的对称点为A(0,2)−,所以由对称性可知MNAN+的最小值为22AD−=102−+−−(211)−=131(−).四、解答题:17.(选择性必修二P8,练习4)本题主要考查数列前n项和公式、通项公式、数列求和等知识,考查函数与方程思想、运算求解、推理论证能力.满分10分22法一:(1)n2时,aSS=n−n=−−(1).................................................2分nnn−1=−21n...............................................................................3分n=1时,aS==1,...............................................................................................4分11综上所述,an=−21..............................................................................................5分n11111(2)因为b===−(),......................7分naa−+n−nn+n(21)(21)22121nn+111111111所以Tbb=b+++=−+−++−(1)()()nn122323522121nn−+111111=(1−+−++−)......................................................9分23352nn−+12111n=(1−)=............................................................................10分22nn++121dd2法二:(1)等差数列前n项和为n+−()an(其中d为公差),1222因为Sn=,所以{}a为等差数列,....................................................................1分nnd并且=1,aS==1,解得:a=1,d=2,.................................................3分1112a=a+(n−1)d=2n−1.....................................................................................5分n1(2)同法一.18.(选择性必修一P86,例题4;P91,例题1)本题主要考查直线的方程、圆的方程、直线与圆的位置关系等知识,考查数形结合思想、函数与方程思想、运算求解、推理论证能力.满分12分法一:(1)延长CB交x轴于点N,因为=OAB120,AB=OA=2,所以=NAB60,所以B(33,),.........................................................................2分\nyC又=ABC120,所以=ANB60,3所以直线BC的倾斜角为120,即k=−3,................................2....................4分BC1B所以直线BC的方程为yx−=−33(−3),–1O1A23N4x即343xy+−0=.................................................................–1..............................5分22(2)依题意设圆M的方程为xyDxEyF++++=0,F=0,D=−2,所以42++=0,DF解得E=−23,................................................7分933++++3D=0,EFF=0.22所以圆M的方程为xyx+y−−=2230,22即(xy−+1)−34=(),......................................................................................8分所以M(1,3),半径r=2,因为直线OC被圆M所截的弦长为4,所以直线OC过圆心M(1,3),...............................................................................9分所以直线OC的方程为yx=3,...........................................................................10分343xy+−0,=x=2,所以由得所以C(2,23)...............................12分yx=3,y=23,法二:(1)(1)延长CB交x轴于点N,因为OAB==ABC120,ABOA==2,所以BAN=ANB=ABN=60,所以△ABN为等边三角形,即AN=2,...............................................................2分所以N(4,0),..............................................................................................................3分又因为直线BC的倾斜角为120,即k=−3,................................................4分BC所以直线BC的方程为yx−=−43(0)−即343xy+−0=......................5分(2)线段OA的中垂线方程为x=1,333因为线段OB的中点坐标为,,直线OB的斜率为,22333所以线段AB的中垂线方程为yx−=−−3即yx=−+323,22x=1,x=1,所以由得.....................................................................8分yx=−+323,y=3,22所以M(1,3),半径r=OC=(10−)+(30−)=2,因为直线OC被圆M所截的弦长为4,所以OC为圆M的直径即M为线段OC中点,...................................................10分所以C(2,23)........................................................................................................12分法三:(1)同法一.\n(2)设圆M的半径为r,因为在△ABC中,=OAB120,ABOA==2,所以=BOA30,AB所以由正弦定理知24r==,即r=2,..............................................7分sinBOA因为直线OC被圆M所截的弦长为4,所以O,A,B,C四点共圆,因为=ABC120,所以=AOC60,所以直线OC的方程为yx=3,...........................................................................10分343xy+−0,=x=2,所以由得yx=3,y=23.所以C(2,23)........................................................................................................12分19.(选择性必修一P49,11)本题考查线面垂直的判定与性质、利用空间向量解决立体几何问题等知识;考查数形结合思想、转化与化归思想、空间想象能力、推理论证能力和运算求解能力;满分12分.法一:(1)如图,以A为原点建立空间直角坐标系Axyz设正方体的棱长为2,则A(0,0,0),O(1,1,0),C(2,2,0),D(0,2,2),..........................................................1分112由BP=PB得:P点的坐标为(2,0,),1232DO=−−(1,1,2),AP=(2,0,),........................................................................2分132因为DOAP=0,13所以DO与AP不垂直,............................................................................................3分1所以DO与平面PAC不垂直..................................................................................4分1(2)设P(2,0,)a,则APa=(2,0,)因为DO⊥面PAC,所以DOAP⊥,11所以DOAP=−a=220,得:a=1,...............................................................6分1所以CP=−(0,2,1),CD=−(2,0,2).1设平面PCD的法向量为m=(,,)xyz,1CDm=−2x+2z=01,令y=1,则xz==2,m=(2,1,2),......................8分CPm=−20y+=z因为DO⊥平面PAC,1所以平面PAC的法向量为DO=−−(1,1,2),.......................................................9分1mDO61所以cosm,DO==−,...............................................................11分1mDO616所以平面PCD与平面PAC所成角的余弦值为..........................................12分16\n法二:(1)如图,以A为原点建立空间直角坐标系Axyz设正方体的棱长为2,则A(0,0,0),O(1,1,0),D(0,2,2),A(2,0,0),C(2,2,0),1分1122由BPPB=得P(2,0,),AP=(2,0,),AC=(2,2,0),...........................2分1233设平面PAC的法向量为n=(,,)xyz,ACx=yn+2=202,令z=3,则xy=−1,=1,n=−(1,1,3),APx=zn+20=3因为DO=−−(1,1,2)与n=−(1,1,3)不平行,.......................................................3分1所以DO与平面PAC不垂直..................................................................................4分1(2)同法一.法三:(1)连接PO,设正方体的棱长为2,则22222在△POD中,DOPO==DP=6,,,........................................2分11133222DO+PODP,所以DO与PO不垂直,...................................................3分111所以DO与平面PAC不垂直..................................................................................4分1(2)同法一.20.(选择性必修二P138,练习5)本题考查曲线的方程,直线与抛物线位置关系等知识,考查数形结合思想以及化归与转化的数学思想、推理能力以及运算能力.满分12分(1)设Pxy(,)为圆N与l的交点,则Hx(,0),x+4因为M(4,0),HNNM=,所以N,0,................................................1分2因为O,P在圆N上,所以NONP=,.............................................................2分2xx+−4422所以=+y得yx=4..............................................................4分22(2)设直线AB的方程为xmy=+4,Axy(,),Bxy(,),1122x=+my42由得ymy−−4=160.......................................................................6分2yx=42=+1664m0,所以y+=y4m,yy=−16............................................................................7分1212因为MAMB=2,所以yy=−2....................................................................8分12yy=−2y=42y=−421211法一:由得或,........................................10分yy12=−16y=−22y=2222yy+212所以m==.422223所以ABx=−+x(y−y=m+)y(y−=)=16263.1212122......................................................................................................................................12分\n2(yy12+)yy12212法二:=++2即−=−−m+22,得m=............10分yyyy2212212222所以ABx=xy−y+m(−y=y+yy+−)()(14)()1212121222=++(=mm116)(6463)...........................................................12分21.(选择性必修二P39,例题12)本题考查数列的通项公式,递推公式,数列求和等基础知识;考查转化与化归思想、运算能力、数学抽象与数学建模素养.满分12分.(1)依题意得aam=+1.02,.......................................................................2分nn+1因为aam=+1.02,nn+1所以ama+m=50+1.0251,所以a+50m=1.02(a+50m),.............4分nn+1nn+1因为a+50m=13050+m0,1所以数列am+50是等比数列,首项是13050+m,公比是1.02,................5分nn−1所以am+m=50+13050(1.02),nn−1所以a=(13050+m)1.02−50m..................................................................6分n(2)记S为数列a的前n项和,nnSaa=a+++15121514=+−(13050++−+50mm+)13050+mm−mm1.0250(13050)1.0250()........................................................................................................................................7分14=+(13050+++++13050m−m)m(m1.0213050)1.02750()...........8分15(13050+−11.02m)()=−750m...........................................................................9分11.02−(13050+−11.35m)()=−750m=2275+125m,..............................................10分11.02−依题2275+125m3095,所以m6.56,所以m最少为6.56吨.............................................................................................12分22.本题考查椭圆的定义及其标准方程、直线与椭圆的位置关系等基础知识;考查数形结合思想、运算能力.满分12分.法一:(1)设椭圆的左焦点为F,则由对称性,BFAF=,所以△ABF的周长为AFBF++AB=+AF+=AF+ABaAO22,........................................................................................................................................1分2222222b22a−b2设Axy(,),则AO=x+y=x+b−x=b+xb,22aa当A,B是椭圆的上下顶点时,△ABF的周长取到最小值22ab+,所以22ab423+=+,即ab+=+23,.........................................................2分22又椭圆焦点F(1,0),所以ab−=1,....................................................................3分所以()(abab)1−+=,所以ab−=−23,22xy解得a=2,b=3,所以椭圆的方程为+=1....................................4分43(2)当A,B为椭圆左右顶点时,直线MN与x轴重合;\n8当A,B为椭圆上下顶点时,可得直线MN的方程为x=;.............................5分5设直线MN的方程xmyn=+,m0,Mxy(,),Nxy(,),1122xmyn=+,222由xy22得(3m4)y6mny+3+12+n0−=,+=1,4326mn3n12−0,yy12+=−2,yy12=2,.................................................6分34m+34m+x−11设直线FA的方程x=+my1,其中m=,Mxy(,),Axy(,),111133y1xmy=+1,122由xy22得(3m+4)y+6my−=90,11+=1,43−9−90,yy=,y=,......................................................7分1323234m+(3my4)+111x−12设直线FB的方程xmy=+1,其中m=,Nxy(,),Bx(,−−y),222233y2xmy=+1,222由xy22得(3m4)y6my+90+−=,22+=1,43−9−90,−=yy,y=,................................................8分2323234m+−+(3my4)222−−9922所以=,所以(3m+4)y+(3m+4)y=0,221122(3m4)y(3m+4)−y+1122223my+3my+4(y+y)=0,............................................................................9分1122122222xx12−−11mymy+=+yy112212yy1222(1)my(1)1n2+−my12ny+−y+22=+=++−+−my()4(ymnn1)(1)12yyyy121222yy12+则3my()12(ymn++1)3(−n+y−y++1)=4()0,即1212yy1222yy12+(3m4)(y)12(+++ymn−n+−=1)3(1)0,...................................10分12yy1226mn3n−12代入yy12+=−2,yy12=2,34m+34m+22−−66mnmn得(3m+4)+12(mn−1)3(+n−1)=0,..............................11分223mn+−4312整理得mn(5−=8)0,又m088所以n=,直线MN的方程为x=+my.55\n8综上直线MN过定点,0..................................................................................12分5法二:(1)同法一.(2)当A,B为椭圆左右顶点时,直线MN与x轴重合;8当A,B为椭圆上下顶点时,可得直线MN的方程为x=;.............................5分5设Axy(,),则Bx(,−−y),y0,设Mx(y,),Nx(y,)00000MMNNx−1x+100则直线AF的方程为xy=+1,直线BF的方程为xy=+1...........6分yy00x−1xy=+01,23(1)xx006(−−1)2由y0得[4]+9+0−=2yy,yy22003xy+4−12=0,22−9−93yy所以00,yy===0M2223(1)x−43y6xx3+x2−5+−000004+2y03yxyx−−13580000所以y=,x=+=1,MM25x−yxx2525−−000058xy3−00即M,..........................................................................................9分252xx−−500x+1xy=+01,23(1)xx006(++1)2由y0得[4]+9+0−=2yy,yy220034xy12+0,−=22−9−−93yy所以00,()−yy===0N2223(1)x+43y6xx3+x2+5++000004+2y03yx++13y5x80000所以y=,x=+=1,NN25x+y2x++52x5000058xy3+00即N,.........................................................................................10分252xx++50033yy00−25x2xy5+−5000所以k==,MN58xx58+−3x000−25xx25+−0035y5yx8+000所以直线MN的方程为yx−=−(),..................................11分25x3xx2++50008令y=0得,x=,58所以直线MN恒过定点(,0)...............................................................................12分5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-10 13:00:05 页数:8
价格:¥5 大小:774.19 KB
文章作者:fenxiang

推荐特供

MORE