首页

江西省重点九江六校2021-2022学年高二文科数学下学期期末联考试题(PDF版附答案)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/9

2/9

3/9

4/9

5/9

6/9

7/9

8/9

9/9

九江“六校”2021-2022学年度第二学期高二期末联考数学(文科)本试卷共4页,23题(含选考题)。全卷满分150分,考试时间120分钟。考生注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。写在试卷、草稿纸和答题卡上的非答题区域均无效。4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。5.考试结束后,请将本试卷和答题卡一并上交。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集U={0,1,2,3,4},集合M={1,2,3},N={2,3,4},则{0,1,4}=A.CMB.CNC.C(M∪N)D.C(M∩N)UUUU52.已知复数z=2i-1,则z+=zA.4iB.-4iC.2D.-223.已知p:x>1,q:x+x-2>0,则p是q的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.在一组样本数据(x,y),(x,y),…,(x,y)(n≥2,x,x,…,x不全相等)的散点图中,若所有样本1122nn12n点(x,y)(i=1,2,…,n)都在直线y=2x+1上,则这组样本数据的样本相关系数为iiA.-1B.0C.2D.1π5.已知原命题为:在△ABC中,B=,则三个内角A,B,C成等差数列,则下列说法错误的是3A.原命题与逆命题同为真命题B.原命题与否命题同为真命题C.逆命题与否命题同为假命题D.逆命题与否命题同为真命题-0.26.已知a=0.3,b=log6,c=log0.6,则0.20.3A.a>b>cB.a>c>bC.b>c>aD.c>b>aππ7.正弦函数是奇函数,f(x)=sin(x+)是正弦函数,因此f(x)=sin(x+)是奇函数,以上推理66A.结论正确B.大前提错误C.小前提错误D.推理形式错误2233445510108.观察下列各式:a+b=1,a+b=3,a+b=4,a+b=7,a+b=11,…,则a+b=A.123B.121C.231D.211【九江“六校”2021-2022学年度第二学期高二期末联考·文科数学试卷第1页(共4页)】\nx9.函数f(x)=ecosx的部分图象大致为yy11ππ22πOππxππOπx442244A.B.yyππ42πOπxππOππx242442-1-1C.D.10.设复数z满足|z|=|z+1+i|,z在复平面内对应的点为(x,y),则A.y=x-1B.y=-x-1C.y=x+1D.y=-x+1x11.已知函数y=(x+a)e的最小值为-1,则实数a=A.-1B.0C.1D.212.已知函数f(x)是R上可导函数,满足f(x)-xf′(x)>0,则A.3f(1)<f(3)B.3f(1)>f(3)C.3f(1)=f(3)D.f(1)=f(3)二、填空题:本题共4小题,每小题5分,共20分。13.2022年5月10日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:价格x99.51010.511销售量y11n865由散点图可知,销售量y与价格x之间有较强的线性相关关系,其线性回归方程是y^=-3.2x+40,则n=.x-x14.已知f(x)为奇函数,当x>0时,f(x)=e+e,则当x<0时,f(x)=.15.执行如图所示的程序框图,输出的s值为.)!"k=0,s=1k<3?&'s#$(1s=1+k=k+1s16.已知直线y=ax(a∈R)与曲线y=lnx相交于两点,则a的取值范围是.三.解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17-21题为必考题,每个试题考生都必须作答。第22,23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)22已知m∈R,命题p:∃x∈R,x-3x+m≤0;命题q:∀x∈R,x-2mx+9≥0.000(1)若命题p为假命题,求实数m的取值范围;(2)若命题p∧q为真命题,求实数m的取值范围.【九江“六校”2021-2022学年度第二学期高二期末联考·文科数学试卷第2页(共4页)】\n18.(12分)2已知复数z=m(1+i)-m(5+3i)+6,m∈R.(1)若复数z为纯虚数,求m的值;(2)若复数z在复平面内所对应的点Z位于第三象限,求m的取值范围.19.(12分)3已知函数f(x)=x-3ax+2(a∈R)的极小值为0.(1)求实数a的值;(2)若过点P(2,-4)的直线l与曲线y=f(x)相切,求直线l的方程.20.(12分)2021年9月教育部发布了第八次全国学生体质与健康调研结果,根据调研结果数据显示,我国大中小学生的健康情况有了明显改善,学生总体身高水平有所增加.但在超重和肥胖率上,中小学生却有一定程度上升,大学生整体身体素质有所下滑.某市为了调研本市学生体质情况,采用按性别分层抽样的方法进行调查,得到体质检测样本的统计数据(单位:人)如下.优秀良好及格不及格男生100200780120女生120200520120(1)记体质检测结果为优秀、良好或及格的学生为体质达标,否则为体质不达标.根据所给数据,完成下面2×2列联表.达标不达标合计男生女生合计(2)依据(1)的统计结果判断,是否有95%的把握认为该市学生体质检测是否达标与性别有关?请说明理由.2n(ad-bc)2附:K=(a+b)(c+d)(a+c)(b+d)2P(K>k)0.150.100.050.0250.010.0010k02.0722.7063.8415.0246.63510.828【九江“六校”2021-2022学年度第二学期高二期末联考·文科数学试卷第3页(共4页)】\n21.(12分)x已知函数f(x)=x(e-1).(1)求证:f(x)的极小值为0;3(2)讨论方程mf(x)=x-mx(m∈R)实数解的个数.(二)选考题:共10分。请考生在第22、23题中任选一题做答。如果多做,则按所做的第一题计分。22.(10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,两点P,Q的极3ππ坐标分别为P(4,),Q(2,),以OQ为直径的圆记为☉C.44(1)求☉C的直角坐标方程;2(2)若直线l经过点P与☉C相交于A,B两点,求证:PA·PB=OP.23.(10分)选修4-5:不等式选讲己知函数f(x)=2|x-2|-3|x-1|.(1)求满足f(a)≥-5的最大整数a的值;22mn(2)在(1)的条件下,对于任意正数m,n,若m+n=a,求证:+≥a.nm【九江“六校”2021-2022学年度第二学期高二期末联考·文科数学试卷第4页(共4页)】\n\nxxfxfxee.51+115.【答案】【解析】运行该程序,k=0,s=1,k<3;k=0+1=1,s==2,k<3;k=1+1=2,313+12+13255s==,k<3;k=1+2=3,s==,此时不满足循环条件,输出s,故输出的s值为.2233321116.【答案】0,【解析】直线yaxaR与曲线ylnx相切,可得a.由直线yaxee11与曲线ylnx相交于两点,则0a,故a的取值范围是0,.ee217.【解析】(1)由已知,命题xRx,3xm0为真命题,···························3分9故0,即94m0,解得m,49所以实数m的取值范围是,.·····························································5分49(2)由(1)知命题p为真命题,则m;···················································7分42命题q:xRx,2mx90为真命题,2则4m360,解得:3m3······················································10分9由命题pq为真命题,故p真q真,故实数m的取值范围是3,.···········12分42218.【解析】zm5m6m3mi·····················································2分2m5m60(1)因为复数z为纯虚数,则.··············································4分2m3m022由m5m60,解得m2或m3;由m3m0,解得m0或m3.故当复数z为纯虚数时,m2.·······························································6分(2)因为复数z在复平面内所对应的点Z位于第三象限,2m5m60所以.·······························································8分2m3m02由m5m60,解得2m3;2由m3m0,解得0m3.·································································10分故m的取值范围是2,3.··································································12分第2页共5页\n219.【解析】(1)fx3xa,当a0时,显然fx0,fx在,上单调递增,无极值;···················2分当a0时,随x的变化fx,fx情况变化如下:x,aaa,aaa,fx00fx极大值极小值所以fx极小值为fa2aa2·························································2分由已知2aa20,解得a1····································································5分32(2)由(1)知:fxx3x2,fx3x132设l切点坐标为Mxfx,,fxx3x2,fx3x10000000切线l方程为:yfxfxxx····················································7分000又因为切线l过点P2,4,所以4fxfx2x00032联立上化简式得:x3x0,解得x0或x3········································10分0000当x0时,l的方程为:y3x2;0当x3时,l的方程为:y24x52.0故直线l的方程为y3x2或y24x52······················································12分20.【解析】(1)22列联表如下:达标不达标合计男生10801201200女生840120960合计19202402160·····················5分22160(1080120840120)k(2)19202409601200····················································8分273.3753.841······································································10分8故没有95%的把握认为该市学生体质检测是否达标与性别有关································12分第3页共5页\nx21.【解析】(1)fxx1e1,····················································2分x所以当x0,时,fxe10,fx在0,单调递增;xx故当x,0时,fxx1e1e10,fx在,0单调递减.所以,fx的极小值为f00.······················································5分32x(2)方程mfxxmx等价于x0或x0时mxe.2x2x令gx,则gx2xxe,由gx0,得x0或x2················7分xe随x的变化可得gxgx,情况变化如下:x,000,222,gx00gx极小值极大值2又gx的极小值g00,极大值g24e,且gx0.当x时,gx;当x时,gx0.···································10分2x所以:当m0时,方程mxe(x0)无实数解;22x当0m4e时,方程mxe(x0)有3个实数解;22x当m4e时,方程mxe(x0)有2个实数解;22x当m4e时,方程mxe(x0)有1个实数解;3综上:当m0时,方程mfxxmx有1个实数解;23当0m4e时,方程mfxxmx有4个实数解;23当m4e时,方程mfxxmx有3个实数解;23当m4e时,方程mfxxmx有2个实数解;··········································12分22.【解析】(1)由已知设C任上一点M,,则OMOQcosMOQ.故2cos,即C极坐标方程为2cos·····························2分442即2cos2sin,所以2cos2sin第4页共5页\n222又xy,cosx,siny,22所以C的直角坐标方程为:xy2x2y,2222即xy1········································································5分223(2)由已知P4,的直角坐标为P22,22,且OP4.4x22tcos设直线l的倾斜角为,则其参数方程为(t为参数),·············7分y22tsin222代入xy2x2y化简得:t32sin52cost160·············8分由已知0,设该方程的两根分别为tt,,则tt16.12122由参数的几何意义知:PAPBtt16OP,122故PAPBOP.·················································································10分注:(1)也可以先求Q的直角坐标,再求圆的直角坐标方程;(2)本质是证明切割线定理,直接用不给分;若是转化为用几何法证明可给满分。x1,x123.【解析】(1)因为fx()2|x2|3|x1|5x7,1x2·······················2分x1,x2x1,1x2x2所以fx()5等价于或或x155x75x15解得6x1或1x2或2x4,···················································4分故fx()5的解集为6,4,故a4··················································5分(2)由(1)可知a4,故mn4.因为mn42mn,(当且仅当mn2时取等号),所以mn4·············7分m2n24n24m216mn64mn16124nmnmmnmn22mn故a.······································································10分nm第5页共5页

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-07-18 17:04:39 页数:9
价格:¥3 大小:745.63 KB
文章作者:随遇而安

推荐特供

MORE