首页

福建省 2022届高三数学三模试题(PDF版带解析)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/9

2/9

3/9

4/9

5/9

6/9

7/9

8/9

9/9

2021—2022学年福州第一中学高三校质检数学试题(完卷时间120分钟;满分150分)第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M,N是R的子集,且MN,则M(ðRN)A.MB.NC.D.R6242.(2xy)的展开式中,xy项的系数是A.30B.30C.60D.601tan3323.若sin,且(,),则521tan211A.B.C.2D.2224.以下四组向量在同一平面的是A.(1,1,0),(0,1,1),(1,0,1)B.(3,0,0),(1,1,2),(2,2,4)C.(1,2,3),(1,3,2),(2,3,1)D.(1,0,0),(0,0,2),(0,3,0)25.已知函数fxln(xx1)cos(x).则当[0,]时,f(x)的图象不可能是A.B.C.D.π16.已知函数fxsinx(0,0)的图象过点P(0,),现将yf(x)的22π图象向左平移个单位长度得到的函数图象也过点P,则3A.的最小值为2B.的最小值为6C.的最大值为2D.的最大值为67.已知AB,CD分别是圆柱上、下底面圆的直径,且ABCD.O,O分别为上、下底面1的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥ABCD的体积为18,则该圆柱的侧面积为A.9B.12C.16D.181\n8.数学赋予建筑美感与活力,许多建筑融入数学元素,更具神韵.图(1)是单叶双曲面(由双曲线绕虚轴旋转形成的立体图形)型建筑.图(2)是其最细处的部分截面图象,上、下底面与地面平行.现测得下底直径AB2010米,上底直径CD202米,AB与CD间的距离为80米,与上下底面等距离的E点处的直径等于CD,则该建筑最细处的直径为A.10B.20C.103D.105图(1)图(2)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.19.设复数z(aR),当a变化时,下列结论正确的是a2iA.|z|=|z|恒成立B.z可能是纯虚数11C.z可能是实数D.|z|的最大值为z210.某人投掷骰子5次,由于记录遗失,只有数据平均数为3和方差不超过1,则这5次点数中可能出现的结果是A.众数为3B.中位数为2C.极差为2D.最大点数为511.已知曲线C是平面内到定点F(0,1)和定直线l:y1的距离之和等于4的点的轨迹,若P(x,y)在曲线C上,则下列结论正确的是00A.曲线C关于x轴对称B.曲线C关于y轴对称C.2≤x≤2D.1≤PF≤40112.已知函数f(x)lnxx,则下列结论正确的是xA.f(x)为偶函数B.f(x)有且仅有两个零点C.f(x)既无最大值,也无最小值D.若xx0且f(x)f(x)0,则xx11212122\n第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.已知等比数列a的前n项和为S,a1,a8a,若S31,则n.nn152n2214.过点M(2,3)的直线与eC:(x3)y16交于A,B两点,当M为线段AB中点时,uuruurCACB.15.产品质量检验过程主要包括进货检验(IQC),生产过程检验(IPQC),出货检验(OQC)3三个环节.已知某产品IQC单独通过率为,IPQC单独通过率为p(0p1),规定上一4类检验不通过则不进入下一类检验,未通过可修复后再检验一次(修复后无需从头检验,通过率不变且每类检验最多两次),且各类检验间相互独立.若该产品能进入OQC的概5率为,则p.616.在三棱锥PABC中,AP平面PBC,PBPC,PAPC2PB4,则三棱锥PABC外接球的表面积为;若动点M在该三棱锥外接球上,且MPBMPC,则点M的轨迹长为.(第一空2分,第二空3分)四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)AB已知△ABC的内角A,B,C所对的边分别为a,b,c,bsincsinB.2(1)求角C;(2)若AB边上的高线长为23,求△ABC面积的最小值.18.(本题满分12分)新能源汽车是指除汽油、柴油发动机之外的所有其他能源汽车,被认为能减少空气污染和缓解能源短缺的压力.在当今提倡全球环保的前提下,新能源汽车越来越受到消费者的青睐.某车企调查了近期购车的200位车主的性别与购车种类的情况,得到如下数据:购置新能源汽车购置传统燃油汽车总计男性8020100女性6535100总计14555200(1)根据表中数据,判断能否有95%的把握认为是否购置新能源汽车与性别有关;3\n(2)已知该车企某汽车销售服务4S店现有5种款式不同的汽车在销售,每种款式的汽车均有新能源和传统燃油两种类型各1辆.假设某单位从这10辆汽车中随机购买4辆汽车,设其中款式相同的汽车的对数为,求的分布列与数学期望.22nadbc附:K,nabcd.abcdacbd2PKk00.100.050.0250.010k2.7063.8415.0246.635019.(本题满分12分)已知空间几何体ABCDE中,△ABE与△BCD是全等的正三角形,平面ABE平面ABC,平面BCD平面ABC.(1)求证:AC∥DE;(2)若ABBC,求直线BD与平面ADE所成角的正弦值.20.(本题满分12分)设数列an的前n项和为Sn,a10,a21,nSn1(2n1)Sn(n1)Sn110(n≥2).(1)证明:an为等差数列;ban,在b和bd的等差数列,(2)设n2nn1之间插入n个数,使这n2个数构成公差为n1求的前n项和.dn21.(本题满分12分)22xy3已知椭圆C:1(ab0)的右顶点为A(2,0),离心率为.22ab2(1)求C的方程;(2)设斜率为1的直线l与C交于P,Q两点,点P关于x轴的对称点为M,若△PQM的外接圆恰过坐标原点,求直线l的方程.22.(本题满分12分)x已知函数f(x)easinx1在区间(0,)内有唯一极值点x1.2(1)求实数a的取值范围;(2)证明:f(x)在区间(0,)内有唯一零点x,且x2x.2214\n2021—2022学年福州第一中学高三校质检数学答案与评分标准一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.12345678CCDBDADB二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9101112ABDACBDBCD三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.213.514.815.16.36;343四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)由已知ABC,ABCC所以bsinbsinbcos,··························································1分222CC所以bcoscsinB,由正弦定理得sinBcossinCsinB,····························2分22C显然sinB0,则cossinC,··································································3分2CCC则cos2sincos,·············································································4分222CC1C因为cos0,所以sin,因为0,22222C所以,则C.···············································································5分26311(2)由Sc23absinC,得ab4c,···········································7分△ABC22222222由余弦定理cab2abcosC,得cabab≥2ababab,···············8分2即c≥4c,得c≥4,当且仅当abc4取等,············································9分此时△ABC面积的最小值为43.································································10分22200(80356520)180018.(1)依题意可得K5.6433.841,·············3分14555100100319所以有95%的把握认为是否购置新能源汽车与性别有关.····································5分(2)的可能取值有0,1,2,·································································6分\n44C285则P(0),··········································································7分4C2110122CC2454P(1),············································································8分4C7102C15P(2),·················································································9分4C2110所以的分布列为012P84121721············································································································10分8412所以E()012.····························································12分21721319.(1)证明:设M,N分别为边AB,边BC的中点,连接EM,DN,因为△ABE为等边三角形,所以EMAB,··················································1分因为平面ABE平面ABC,且平面ABEI平面ABCAB,所以EM平面ABC,···············································································2分同理可证DN平面ABC,所以EM∥DN,······················································································3分因为△ABE与△BCD是全等的正三角形,所以EMDN,所以四边形EMND为平行四边形,·······························································4分所以DE∥MN,因为MN为△ABC的中位线,所以MN∥AC,所以AC∥DE.·································································5分uuuruur(2)因为ABBC,以B为坐标原点,BC方向为x轴,BA方uuur向为y轴,ME方向为z轴建立空间直角坐标系,如图所示...............................................................................................6分设AB2,则B(0,0,0),A(0,2,0),D(1,0,3),E(0,1,3),................................................................................................7分uuuruuur所以AD(1,2,3),DE(1,1,0),ur设平面ADE的法向量为m(x,y,z),uuururADm0x2y3z0ur则uuurur,所以,取m(3,3,3),·································9分DEm0xy0\nuuurBD(1,0,3),设直线BD与平面ADE所成角为,uuururuuurBDm621则sincosBD,muuurur,·····································11分BDm421721所以直线BD与平面ADE所成角的正弦值为.··········································12分720.(1)证明:因为n≥2时,nS(2n1)S(n1)S10,n1nn1则n(SS)(n1)(SS)10,n1nnn1即na(n1)a10,n≥2,···································································2分n1n因为a2a10,··················································································3分21*则na(n1)a10,nN①,n1n所以(n1)ana10,n≥2②,nn1则①-②得na2nana0,n≥2,n1nn1即aa2a,n≥2,············································································5分n1n1n所以a为等差数列.·················································································6分n(2)a的首项为a0,公差为aa1,所以an1,n121nn1所以b2,··························································································7分nnn1n1bn1bn2221n1所以d,则,·········································8分nn1n1n1n1d2n1记的前n项和为Tn,dn1011121n1则T2()3()4()(n1)()①,n222211112131n11n所以T2()3()4()n()(n1)()②,··············9分n22222211121n11n则①-②得T2()()()(n1)(),·······························10分n222221n1()121n1n所以T1(n1)()3(n3)(),········································11分n2122121n1所以T6(n3)().············································································12分n2\na2,c321.解:(1)依题意,···································································2分a2222abc.a2解得,····························································································3分b12x2所以椭圆C的标准方程为y1.·····························································4分4(2)设l的方程为yxm,设P(x,y),Q(x,y),则M(x,y).112211yxm,22由x2消去y得,5x8mx4m40,2y1.422依题意64m20(4m4)0,即5m5,······································5分8mxx125所以,················································································6分24m4xx1258m2m4mm所以yyxx2m2m,所以线段PQ的中点坐标为(,),12125555m4m3m所以线段PQ的中垂线方程为y(x),即yx,······················7分5553m依题意,线段PQ的中垂线与x轴的交点E(,0)即为△PQM外接圆的圆心,52m点E到直线l的距离为d,5228m216(m1)422PQ2(xx)4xx2()5m,·············8分1212555PQ2222406m设△PQM外接圆的半径为r,则rd(),··························9分22523m22406m所以△PQM外接圆的方程为(x)y,·································10分525因为△PQM外接圆恰过原点O(0,0),23m2406m26所以(),解得m,·····················································11分525326所以直线l的方程为yx.·································································12分3\nx22.解:(1)f(x)eacosx,···································································1分xx(0,)时,cosx(0,1),1ee2,2①当a≤1时,f(x)0,f(x)在(0,)上单调递增,没有极值点,不合题意,舍去.·································2分2②当a1时,显然f(x)在(0,)上递增,又因为f(0)1a0,f()e20,22所以f(x)在(0,)上有唯一零点x,所以x(0,x),f(x)0;x(x,),f(x)0,11122所以f(x)在(0,)上有唯一极值点,符合题意.···············································3分2综上,a(1,).······················································································4分x(2)由(1)知a1,所以x,时,f(x)eacosx0,·····················5分2所以x(0,x),f(x)0,f(x)单调递减;x(x,),f(x)0,f(x)单调递增,11所以x(0,x)时,f(x)f(0)0,······························································6分1则f(x)0,又因为f()e10,··························································7分1所以f(x)在(x,)上有唯一零点x,12即f(x)在(0,)上有唯一零点x.··································································8分2因为f(2x)e2x1asin2x1e2x12asinxcosx1,1111由(1)知f(x)0,所以ex1acosx,则f(2x)e2x12ex1sinx1,11112tt构造p(t)e2esint1,t(0,),···························································9分22tttt所以p(t)2e2e(sintcost)2e(esintcost),tt记(t)esintcost,t(0,),则(t)ecostsint,显然(t)在(0,)上单调递增,22所以(t)(0)0,所以(t)在(0,)上单调递增,所以(t)(0)0,2所以p(t)0,所以p(t)在(0,)上单调递增,所以p(t)p(0)0,2所以f(2x)0f(x),···········································································11分12由前面讨论可知:x2x,xx,1112且f(x)在x(x,)单调递增,所以2xx.················································12分112

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-06-16 11:00:01 页数:9
价格:¥3 大小:719.79 KB
文章作者:随遇而安

推荐特供

MORE