首页

陕西省西安中学2022届高三数学理科五月全仿真模拟考试(一)(PDF版含答案)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

陕西省西安中学高2022届高三第一次仿真模拟考试理科数学试题(时间:120分钟满分:150分)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题"所有实数的平方都是正数"的否定为()A.所有实数的平方都不是正数B.有的实数的平方是正数C.至少有一个实数的平方不是正数D.至少有一个实数的平方是正数2.已知M,N为集合I的非空真子集,且M,N不相等,若N∩(∁IM)=⌀,则M∪N=()A.MB.NC.ID.⌀3.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001、002、…、699、700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()3321183429 7864560732  5242064438  122343567735789056428442125331  3457860736  2530073285  234578890723689608043256780843  6789535577  3489948375  22535578324577892345A.607B.328C.253D.0074.如图水平放置的一个平面图形的直观图是边长为1cm的正方形,则原图形的周长是()A.8cmB.6cmC.2(1+3)cmD.2(1+2)cm5.《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐.齐去长安三千里.良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.”为了计算每天良马和驽马所走的路程之和,设计框图如下图.若输出的S的值为350,则判断框中可填()A.i>6?B.i>7?C.i>8?D.i>9?高三年级数学试题第1页共4页\n22226.在平面直角坐标系xOy中,圆C1:x+y+2x−6y+6=0与圆C2:x+y−4x+2y+4=0,则两圆的公切线的条数是()A.4条B.3条C.2条D.1条7.下面是关于公差d>0的等差数列{an}的四个命题:p1:数列an是递增数列;p2:数列nan是递增数列;anp3:数列n是递增数列;p4:数列an+3nd是递增数列;其中的真命题为()A.p1,p2B.p1,p4C.p2,p3D.p3,p420228.设a∈Z,且0≤a<13,若51+a能被13整除,则a=()A.0B.1C.11D.129.设z1,z2是复数,则下列命题中的假命题是()A.若|z1-z2|=0,则z1=z2B.若z1=z2,则z1=z222C.若|z1|=|z2|,则z1·z1=z2·z2D.若|z1|=|z2|,则z1=z2π110.已知函数f(x)=sin(2x-),若方程f(x)=在(0,π)内的解为x1,x2(x1<x2),则sin(x1-33x2)=()22311A.-B.-C.-D.-322311.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m名同学每人随机写下两个都小于1的正实数x,y组成的实数对(x,y);再统计两数能与1构成钝角三角形三边的数对(x,y)的个数n;最后再根据统计数n估计π的值,那么可以估计π的值约为()4nn+24n+2mn+2mA.B.C.D.mmmm312.已知双曲线C过点(3,2)且渐近线为y=±x,则下列结论错误的是()32x2A.曲线C的方程为-y=1;B.左焦点到一条渐近线距离为1;3C.直线x-2y-1=0与曲线C有两个公共点;D.过右焦点截双曲线所得弦长为23的直线只有三条。第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)π13.设0<θ<,向量a=sin2θ,cosθ,b=cosθ,1,若a//b,则tanθ=_______.2高三年级数学试题第2页共4页\n14.已知等比数列an中有a3a11=4a7,数列bn是等差数列,且a7=b7,则b5+b9=(2x+1)π15.函数f(x)=sin-ln|x-2|的所有零点之和为_________.216.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正切值为三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.(本小题满分12分)为了测量隧道口A、B间的距离,开车从A点出发,沿正西方向行驶4002米到达D点,然后从D点出发,沿正北方向行驶一段路程后到达C点,再从C点出发,沿东南方向行驶400米到达隧道口B点处,测得BD间的距离为1000米.(1)若隧道口B在点D的北偏东θ度的方向上,求cosθ的值;(2)求隧道口AB间的距离.18.(本小题满分12分)某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x(单位:千万元)对年销售量y(单位:千万件)的影响,统计了近10年投入的年研发费用xi与年销售量yi(i=1,2⋯,10)的数据,得到散点图如图所示.d(1)利用散点图判断y=a+bx和y=c·x(其中c,d均为大于0的常数)哪一个更适合作为年销售量y和年研发费用x的回归方程类型(只要给出判断即可,不必说明理由);(2)对数据作出如下处理,令ui=lnxi,vi=lnyi,得到相关统计量的值如下表:101010102viui(ui-u(vi-v)(ui-ui=1i=1i=1i=1151528.2556.5根据第(1)问的判断结果及表中数据,求y关于x的回归方程;-39(3)已知企业年利润z(单位:千万元)与x,y的关系为z=18e4y-x(其中e≈2.71828),根2据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?高三年级数学试题第3页共4页\n附:对于一组数据(u1,v1),(u2,v2),⋯,(un,vn),其回归直线v=α+βu的斜率和截距的最小二n(ui-u(vi-v)i=1乘估计分别为β=,α=v-βu.n2(ui-ui=1∘19.(本小题满分12分)如图,在直角梯形ABCD中,AB⎳DC,∠ABC=90,AB=2DC=2BC,E为AB的中点,沿DE将△ADE折起,使得点A到点P位置,且PE⊥EB,M为PB的中点,N是BC上的动点(与点B,C不重合).(1)证明:平面EMN⊥平面PBC;6(2)是否存在点N,使得二面角B-EN-M的余弦值为?若存在,确定N点位置;若不存6在,说明理由.20.(本小题满分12分)在平面直角坐标系xOy中,动点P到点F(1,0)的距离比到y轴的距离大1.(1)求点P的轨迹方程;2已知点Q在直线x=-1上,点P在第一象限,满足FP⊥FQ,记直线OP,OQ,PQ的斜率分别为k1,k2,k3,求k1k2k3的最小值.121.(本小题满分12分)已知函数f(x)=alnx+(x>0).x(1)讨论函数f(x)的单调性;(2)若存在x1,x2满足0<x1<x2,且x1+x2=1,f(x1)=f(x2),求实数a的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分.22.(本小题满分10分)[选修4-4:坐标系与参数方程]在平面直角坐标系xOy中,已知点P(1+cosα,sinα),参数α∈[0,π],直线l的方向向量为a=(1,1),且过定点A(-1,0).(1)在平面直角坐标系xOy中求点P的轨迹方程;(2)若直线l上有一点Q,求PQ的最小值.23.(本小题满分10分)[选修4-5:不等式选讲]设函数f(x)=x+3+x-1,x∈R,不等式f(x)<6的解集为M.(1)求M;22(2)当a∈M,b∈M时,证明:ab+2>2a+b.高三年级数学试题第4页共4页\n高三第一次仿真模拟考试理科数学答案123456789101112CABABABDDACC113.14.815.1216.32BDBC100040017.解:(Ⅰ)在ΔABC中,由正弦定理得=,即=,sinCsin∠CDBsin45°sin∠CDB2所以sin∠CDB=,··················································································(2分)5°由题可知,∠CDB<90,············································································(4分)2323所以cos∠CDB=,即cosθ=.······················································(6分)552(Ⅱ)由(Ⅰ)可知,cos∠ADB=sin∠CDB=,···································(8分)5222在ΔABD中,由余弦定理得AB=BD+AD-2⋅BD⋅AD⋅cos∠ADB222=1000+(4002)-2×1000×4002×=1000000,5所以AB=1000,故两隧道口AB间的距离为1000米.···························································(12分)d18.解:(1)由散点图知,选择回归类型y=c·x更适合;·················································(2分)d(2)对y=c·x两边取对数,得lny=lnc+dlnx,即v=lnc+du,······································(3分)328.251由表中数据可得u=v=,d==,256.5231333令lnc=m,则m=v-du=-×=,即c=e4,·····················································(7分)22243所以年销售量y和年研发费用x的回归方程为y=e4x;·····················································(8分)9(3)由(2)知,z(x)=18x-x,··················································································(9分)292令t=x,则f(t)=18t-t,2当t=2时f(t)取得最小值,·························································································(11分)所以当x=4千万元时,年利润z取最大值且最大值为z(4)=18千万元=1.8亿元故要使年利润取最大值,预计下一年要投入0.4亿元的研发费用.···················································································(12分)19.证明:(1)∵PE⊥EB,PE⊥ED,EB∩ED=E,EB,ED⊂平面EBCD.∴PE⊥平面EBCD.·······················································(1分)又PE⊂平面PEB,∴平面PEB平面EBCD,而BC⊂平面EBCD,BC⊥EB,且平面PEB∩平面EBCD=EB,所以BC⊥平面PEB,··············(3分)而ME⊂平面PBE,∴BC⊥EM,由PE=EB,PM=MB知EM⊥PB,而BC∩PB=B,且PB,BC⊂平面PBC,可知EM⊥平面PBC,·················································(5分)又EM⊂平面EMN,∴平面EMN⊥平面PBC.·········(6分)(2)方法1:假设存在点N满足题意,过作MQ⊥EB于Q,由PE⊥EB知PE⎳MQ,由(1)得PE⊥平面EBCD,所以MQ⊥平面EBCD,··························································(7分)过Q作QR⊥EN于R,连接MR,由MQ⊥平面EBCD,且EN⊂平面EBCD,故MQ⊥EN,·1·\n而QR⊥EN,且QR∩QM=Q,QR,QM⊂平面MQR则EN⊥平面MQR,而MR⊂平面MQR,则EN⊥MR,即∠MRQ是二面角B-EN-M的平面角,·························································(9分)不妨设PE=EB=BC=2,则MQ=1,在Rt△EBN中,设BN=x(0<x<2),BNEN由Rt△EBN∼Rt△ERQ得,=RQEQ22x2+xx即=,得RQ=,········································································(10分)RQ122+x2MQx2+4∴tan∠MRQ==,RQx26x+4依题意知cos∠MRQ=,即tan∠MRQ==5,6x解得x=1∈(0,2),此时N为BC的中点.6综上知,存在点N,使得二面角B-EN-M的余弦值,此时N为BC的中点.···············(12分)6方法2:由(1)知,EB,ED,EP两两垂直,所以以E为原点,分别以EB,ED,EP所在直线为x轴、y轴、z轴建11立如图所示的空间直角坐标系,设EB=EP=ED=1,BN=t(0<t<1),则N(1,t,0),M2,0,2,····(7分)平面EBN的法向量为m=(0,0,1)······················································································(8分)xz+=01设面EMN的一个法向量为n=(x,y,z),则22,则可取n=1,−t,−1·····················(10分)x+ty=0161所以cosm,n==,解得t=,即N为BC的中点.····································(12分)1621+1+2t2220.解:(1)设P(x,y),由已知得(x-1)+y=|x|+1,··························································(1分)2222当x≥0时,(x-1)+y=(x+1),得y=4x,······································································(3分)222当x<0时,(x-1)+y=(-x+1),得y=0;2所以点P的轨迹方程为y=4x或y=0(x<0).···········································································(5分)2(2)设P(x0,y0)(x0>0,y0>0),Q(-1,t),则y0=4x0,因为FP⊥FQ,所以FP⋅FQ=-2(x0-1)+ty0=0,即ty0=2(x0-1),y0y0-t因为k1=,k2=-t,k3=,··························································································(7分)x0x0+12-ty0(y0-t)-t(y0-ty0)-t[4x0-2(x0-1)]-2t所以k1k2k3====x0(x0+1)x0(x0+1)x0(x0+1)x02-4(x0-1)-4(y0-4)1441===-4-=4-,··································································(9分)x0y0y3y0y3y3y00003构造f(m)=4m-m(m>0),23所以f'm=12m-1,令f'm≥0,得m≥,633所以f(m)在0,6上单调递减,在6,+∞上单调递增,33413所以f(m)min=f=-,即3-的最小值为-,69y0y0943所以k1k2k3的最小值为-.······························································································(12分)9ax-121.解:(1)函数f(x)的定义域为(0,+∞),f'(x)=.···························································(1分)2x当a≤0时,f'(x)<0,f(x)在(0,+∞)上单调递减;11当a>0时,令f'(x)<0,得0<x<,令f'(x)>0,得x>,aa11所以函数f(x)在0,a上单调递减,在a,+∞上单调递增,综上所述:当a≤0时,f(x)在(0,+∞)上单调递减;·2·\n11当a>0时,函数f(x)在0,a上单调递减,在a,+∞上单调递增.···································(5分)11x211(2)fx1=fx2⇒alnx1+=alnx2+⇒aln+-=0,x1x2x1x2x1x2x1x2又x1+x2=1,则aln+-=0.x1x2x1x21令t=>1,即方程alnt+-t=0在1,+∞上有解.································································(7分)x1t1令ht=alnt+-t,t∈1,+∞,t1-t2+at-1a-t+t1则h't==,t∈1,+∞,则t+>2,·······················································(8分)t2tt当a≤2时,h't<0,ht在1,+∞上单调递减,又h1=0,则ht<0在t∈1,+∞上恒成立,不合题意;22当a>2时,a-4>0,令-t+at-1=0,可知该方程有两个正根,2a+a-4因为方程两根之积为1且t>1,所以t=.222a+a-4a+a-4当t∈1,时,h't>0;当t∈,+∞时,h't<0;222a+a-4则t∈1,时,ht>h1=0,2a21a2a而he=a+a-e<a+1-ea>2.e2xx令φx=x+1-ex>2,则φ'x=2x-e,x令mx=φ'x,m'x=2-e<0,2则φ'x在2,+∞上单调递减,φ'x<φ'2=4-e<0,2a则φx在2,+∞上单调递减,φx<φ2=5-e<0,即he<0,2a+a-4a故存在t0∈,e,使得ht0=0,故a>2满足题意.2综上所述,实数a的取值范围是2,+∞.············································································(12分)x=1+cosα22.解:(1)由题知:点P的坐标满足y=sinα(α∈[0,π])22所以点P的轨迹方程为(x-1)+y=1(y≥0)···································································(5分)x=-1+t(2)直线l的方向向量为a=(1,1),且过定点A(-1,0).转换为l的参数方程为y=t(t是参数)所以直线l的直角坐标方程为:y=x+1,············································································(8分)|1-0+1|所以|PQmin|=-1=2-1.············································································(10分)221+1-2x-2(x<-3),23.解:(Ⅰ)f(x)=|x+3|+|x-1|=4(-3≤x≤1),··················································(2分)2x+2(x>1),当x<-3时,-2x-2<6,解得-4<x<-3;当-3≤x≤1时,由4<6可得-3≤x≤1;当x>1时,2x+2<6,解得1<x<2.综上,不等式f(x)<6的解集M={x|-4<x<2}.···························································(5分)2222(Ⅱ)当a∈M,b∈M时,即0≤a<2,0≤b<2.22要证|ab+2|>|2|a+b|,只需证(ab+2)>2(a+b),·····················································(7分)22222222只需证ab+4ab+4>2a+4ab+2b,只需证ab-2a-2b+4>0,22只需证(a-2)(b-2)>0,···································································································(9分)22又a-2<0,b-2<0,22故(a-2)(b-2)>0成立,即原不等式成立.··································································(10分)·3·

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-05-31 18:00:03 页数:7
价格:¥3 大小:462.13 KB
文章作者:随遇而安

推荐特供

MORE