首页

河南省信阳市2021-2022学年高二数学(理)下学期期中质量检测试题(Word版带答案)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

2021-2022学年普通高中高二下学期期中教学质量检测数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数则的虚部为A.-4B.C.4D.2已知,则等于()A.B.C.D.3.函数在处导数存在,若p:是的极值点,则A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.已知函数的图象在和处的切线相互垂直,则()A.B.0C.1D.25.满足+=2n的最小自然数为()A.1B.2C.3D.46.已知函数,在其定义域内的子区间上不单调,则实数m的取值范围为()A.B.C.D.7.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:\n,则按照以上规律,若具有“穿墙术”,则()A.B.C.D.8.用反证法证明命题“三角形的内角至多有一个钝角”时,假设的内容应为()A.假设至少有一个钝角B.假设至少有两个钝角C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角9.方底无盖水箱的容积为256,则最省材料时,它的高为()A.4B.6C.4.5D.810.已知,为f(x)的导函数,则的图象是()A.B.C.D.11.已知且,则的最大值A.B.2C.1D.12.已知定义域为的函数满足(为函数的导函数),则不等式的解集为()A.B.C.D.二、填空题:本大题共4个小题,每小题5分,共20分,把答案填在答题卡的相应位置.13.设复数的模为,则________________.\n14.若函数则与x轴围成的封闭图形的面积为___________.15.已知是抛物线上一点,过点的切线方程的斜率可通过如下方式求得在两边同时求导,得:,则,所以过的切线的斜率.试用上述方法求出双曲线在处的切线方程为_________.16.已知函数则下列命题正确的有:___________.①若有两个极值点,则或②若有极小值点,则③若有极大值点,则④使连续的a有3个取值三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知复数z满足.(1)求复数z;(2)若复数在复平面内对应的点在第一象限,求实数a的取值范围.19.设a,b,c均为正数,且.(1)证明:;(2)是否存在?并说明理由.21.某电子公司开发一种智能手机配件,每个配件的成本是15元,销售价是20元,月平均销售件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后电子公司销售该配件的月平均利润是(元).\n(1)写出与的函数关系式;(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.22.已知数列的通项公式,其前项和为.(1)求;(2)若,试猜想数列的通项公式,并用数学归纳法证明.23.设函数f(x)=x3-6x+5,x∈R.(1)求f(x)的极值点;(2)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围;(3)已知当x∈(1,+∞)时,f(x)≥k(x-1)恒成立,求实数k的取值范围.24.设函数,曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2.(1)求(2)证明:\n2021-2022学年普通高中高二下学期期中教学质量检测数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】B【11题答案】【答案】B【12题答案】【答案】A\n二、填空题:本大题共4个小题,每小题5分,共20分,把答案填在答题卡的相应位置.【13题答案】【答案】3【14题答案】【答案】【15题答案】【答案】【16题答案】【答案】③④三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.【17题答案】【答案】(1)(2)【18题答案】【答案】(1)证明见解析(2)不存,理由见解析【19题答案】【答案】(1)与的函数关系式为;(2)改进工艺后,每个配件的销售价为元时,该电子公司销售该配件的月平均利润最大.【20题答案】【答案】(1);(2)见解析.【21题答案】【答案】(1)极大值点为,极小值点为;(2);(3).【22题答案】【答案】(1);(2)详见解析.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-05-27 08:06:20 页数:6
价格:¥3 大小:197.11 KB
文章作者:随遇而安

推荐特供

MORE