首页

浙江省宁波市北仑中学2021-2022学年高一数学下学期期中考试试题(Word版附答案)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/9

2/9

剩余7页未读,查看更多内容需下载

北仑中学2021学年第二学期高一年级期中考试数学试卷(高一(1)班使用)一、单选题(本大题共8小题,每小题5分,共40分)1.已知直线的倾斜角为,直线经过点和,且直线与垂直,的值为(       )A.1B.6C.0或6D.02.过与的交点,且平行于向量的直线方程为(       )A.B.C.D.3.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有(  )甲的成绩乙的成绩环数78910频数5555环数78910频数6446丙的成绩环数78910频数4664A.B.C.D.4.某圆经过两点,圆心在直线上,则该圆的标准方程为(     )A.B.C.D.5.若无论实数取何值,直线与圆相交,则的取值范围为(       )A.B.C.D.6.一道竞赛题,三人可解出的概率依次为,若三人独立解答,则仅有1第9页/共9页学科网(北京)股份有限公司 人解出的概率为(       )A.B.C.D.17.已知双曲线的离心率为,则其两条渐近线所成的锐角的余弦值为(       )A.B.C.D.8.设为椭圆上的动点,为椭圆的焦点,为的内心,则直线和直线的斜率之积(  )A.是定值B.非定值,但存在最大值C.非定值,但存在最小值D.非定值,且不存在最值二、多选题(本大题共4小题,每小题5分,共20分)9.已知圆C1:(x+6)2+(y-5)2=4,圆C2:(x-2)2+(y-1)2=1,M,N分别为圆C1和C2上的动点,P为x轴上的动点,则|PM|+|PN|的值可以是(  )A.6B.7C.10D.1510.已知曲线:,则(       )A.若,则曲线是圆,其半径为B.若,则曲线是椭圆,其焦点在轴上C.若曲线过点,,则是双曲线D.若,则曲线不表示任何图形11.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续天,每天新增疑似病例不超过人”.过去日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是(       )甲地:总体平均数,且中位数为;乙地:总体平均数为,且标准差;丙地:总体平均数,且极差;丁地:众数为,且极差.A.甲地B.乙地C.丙地D.丁地12.已知抛物线的焦点为F,准线为l,过F的直线与E交于A,B两点,C,D分别为A,B在l上的射影,且,M为AB第9页/共9页学科网(北京)股份有限公司 中点,则下列结论正确的是(       )A.B.为等腰直角三角形C.直线AB的斜率为D.的面积为4三、填空题(本大题共4小题,每小题5分,共20分)13.若直线与直线平行,则直线与之间的距离为_____.14.已知双曲线的左右焦点分别为,过点作双曲线其中一条渐近线的垂线,垂足为,延长交另一渐近线为点,满足,则双曲线的离心率为______.15.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527   0293   7140   9857   0347   4373   8636   6947   1417   46980371   6233   2616   8045   6011   3661   9597   7424   7610   4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.16.椭圆C:的上、下顶点分别为A,C,点B在椭圆上,平面四边形ABCD满足∠BAD=∠BCD=90°,且,则该椭圆的离心率为__________﹒四、解答题(本大题共6小题,共70分)17.抛掷两枚质地均匀的骰子,观察骰子向上一面的点数,求:(1)点数之和是4的倍数的概率;(2)点数之和大于5且小于10的概率.18.已知直线和相交于点P,且P点在直线上.(1)求点P的坐标和实数a的值;(2)求过点且与点P的距离为的直线方程.19.某家水果店的店长为了解本店苹果的日销售情况,记录了近期连续120天苹果的日销售量(单位:),并绘制频率分布直方图如下:(1)请根据频率分布直方图估计该水果店苹果第9页/共9页学科网(北京)股份有限公司 日销售量的众数和平均数;(同一组中的数据以这组数据所在区间中点的值作代表)(2)一次进货太多,水果会变得不新鲜;进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能80%地满足顾客的需求(在10天中,大约有8天可以满足顾客的需求).请问每天应该进多少千克苹果?(精确到整数位)20.如图,为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区.规划要求:新桥与河岸垂直;保护区的边界为圆心在线段上,并与相切的圆,且古桥两端和到该圆上任意一点的距离均不少于80m.经测量,点位于点正北方向60m处,点C位于点正东方向170m处(为河岸),.(1)求新桥的长;(2)长的范围是多少?21.已知椭圆E:的离心率为,且点(1,)在椭圆E上,A为椭圆E的右顶点,O为坐标原点,过点A的直线l与椭圆E的另外一个交点为P,线段PA的中点为M.(1)若直线l的斜率为1,求直线OM的斜率;(2)若,求三角形OPM的面积.22.已知抛物线上的任意一点到焦点的距离比到y轴的距离大.(1)求抛物线C的方程;(2)过抛物线外一点作抛物线的两条切线,切点分别为A,B,若三角形ABP的重心G在定直线上,求三角形ABP面积的最大值.第9页/共9页学科网(北京)股份有限公司 第9页/共9页学科网(北京)股份有限公司 【参考答案】1-8DCBDABAA9-12BCDBCCDAC13.14.215.16.17.(1)(2)解析:如图,基本事件共有36种.(1)起“点数之和是4的倍数”为事件A,从图中可以看出,事件A包含的基本事件共有9个,所以;(2)记“点数之和大于5且小于10”为事件B,从图中可以看出,事件B包含的基本事件共有20个,如图中虚线框内所示,所以.18.(1)P(2,1),a=2.(2)解析:(1)因为直线和相交于点P,且P点在直线上,所以联立,解得:P(2,1).将P的坐标(2,1)代入直线中,可得2a+1-3a+1=0,解得a=2.(2)设所求直线为l.当直线l的斜率不存在时,则l的方程为x=-2.此时点P与直线的距离为4,不合题意,舍去;当直线l的斜率存在时,设直线l的斜率为k,则l的方程为,即.因此点P到直线的距离,解方程可得k=2,所以直线的方程为.第9页/共9页学科网(北京)股份有限公司 19.(1)众数为为85,平均数为;(2)每天应该进98千克苹果.解析:(1)如图示:区间频率最大,所以众数为85,平均数为:(2)日销售量[60,90)的频率为,日销量[60,100)的频率为,故所求的量位于由得故每天应该进98千克苹果.20.(1)m;(2)解析:如图,以为轴建立直角坐标系,则,,由题意,直线方程为:.又,故直线方程为,由,解得,即,所以;(2)设,即,由(1)直线的一般方程为,圆的半径为,由题意要求,第9页/共9页学科网(北京)股份有限公司 由于,因此,∴∴,即长的范围是.21.(1);(2)三角形OPM的面积为解析:(1)由离心率可得:,又,,解得:,所以椭圆方程为,则,将与椭圆方程联立得:,设,则,所以,所以,设,则有,,所以直线OM的斜率为;(2)设直线l的方程为,则联立椭圆方程得:,设,则,则,则,则,则,解得:或(舍去),所以,当时,此时,直线为,所以,点O到直线l的距离为,则三角形OPM的面积为,同理,当时,求得三角形OPM的面积为,综上:三角形OPM的面积为22.(1);(2).解析:(1)根据题意,抛物线上的任意一点到焦点的距离与到直线的距离相等,由抛物线的定义可知:,,抛物线C的方程为.(2)设动点,切点,.第9页/共9页学科网(北京)股份有限公司 设过A的切线PA方程为,与抛物线方程联立,消去x整理得,,所以,所以切线PA方程为,同理可得切线PB方程为,联立解得两切线的交点,所以有.因为,又G在定直线,所以有,即P的轨迹为,因为P在抛物线外,所以.如图,取AB中点Q,则,所以,因为,所以,所以,所以当时,.第9页/共9页学科网(北京)股份有限公司

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-05-12 09:00:05 页数:9
价格:¥3 大小:361.15 KB
文章作者:随遇而安

推荐特供

MORE