首页

河南省中原名校2021-2022学年高二理科数学上学期12月联考试题(带答案)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/8

2/8

剩余6页未读,查看更多内容需下载

河南省中原名校2021-2022学年高二上学期12月联考理科数学试卷全卷满分150分,考试用时120分钟。注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。)1.与向量(-3,-4,5)共线的单位向量是().和..和.2.已知点在椭圆上,则().点不在椭圆上.点不在椭圆上.点在椭圆上.无法判断点、、是否在椭圆上3.平行六面体中,,则().1...4.已知向量则与的夹角为().0°.45°.90°.180°5.已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的个数是()①PA⊥AD ②平面ABC⊥平面PBC③直线BC∥平面PAE④直线PD与平面ABC所成角为.1个.2个.3个.4个6.如图是抛物线形拱桥,当水面在图中位置时,拱顶离水面2米,水面宽4米.水下降1米后,水面宽为().米.米.米.米7.给出下列命题:①直线的方向向量为,直线的方向向量为则②直线的方向向量为,平面的法向量为,则.③平面的法向量分别为,则.④平面经过三点A(1,0,-1),B(0,1,0),C(-1,2,0),向量是平面的法向量,则u+t=1.其中真命题的序号是().②③.①④.③④.①②8.若双曲线的左焦点在抛物线的准线上,则的值为()A.B.C.D.9.如图,正方体的棱长为1,O是底面的中心,则点O到平面的距离为(  )....10.若双曲线()的右支上到原点和右焦点距离相等的点有两个,则双曲线离心率的取值范围是().... 11.对于抛物线C:,我们称满足的点在抛物线的内部.若点在抛物线内部,则直线与曲线C().恰有一个公共点.恰有2个公共点.可能有一个公共点,也可能有两个公共点.没有公共点12.已知、是椭圆()的两个焦点,是椭圆上任意一点,从任一焦点引的外角平分线的垂线,垂足为,则点的轨迹().圆.椭圆.双曲线 .抛物线二、填空题.(本题共5小题,每小题6分,共30分)13.在等差数列中,已知公差,且,则__________.14.在中,若,则角A等于________;15.设等比数列共有项,它的前项的和为100,后项之和为200,则该等比数列中间项的和等于__________.16.在中,若,则角B等于__________.三、解答题(本大题共6小题,共计70分,解答应写出文字说明证明过程或推演步骤.)17.(本题满分10分)一个几何体的三视图如图所示(单位长度为:)(1)求该几何体的体积;(2)求该几何体的表面积. 18.(本题满分12分)已知△ABC的三个顶点分别为A(2,4),B(1,1),C(7,3).(1)求BC边上的中线所在直线的方程;(2)求BC边上的高所在直线的方程.19.(本题满分12分)如图,在正方体ABCD-A1B1C1D1中,E、F、P、Q分别是BC、C1D1、AD1、BD的中点.(1)求证:PQ∥平面DCC1D1;(2)求证:AC⊥EF.20.(本题满分12分)已知直线方程为,其中.(1)求直线恒过定点的坐标。当变化时,求点到直线的距离的最大值及此时的直线方程;(2)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时的直线方程.21.(本题满分12分)已知四棱锥如图所示,,,,平面平面,点为线段的中点.(1)求证:平面;(2)求点到平面的距离.22.(本题满分12分)如图1,在中,,,别为棱,的中点,将沿折起到的位置,使,如图2,连结,(1)求证:平面平面;(2)若为中点,求直线与平面所成角的正弦值; (3)线段上是否存在一点,使二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.理科数学答案一、选择题答题卡:(512=60分)题号13456789101112答案ABBADBCBCDA二、填空题.(本题共4小题,每小题5分,共20分)13.14514.15.16.或三.解答题:(本大题共6小题,满分70分。解答应写出文字说明,证明过程或演算步骤)17(10分)解:(1)由图知该几何体是一个上面是正四棱锥,下面是一个正方体的组合体.且正四棱锥的底面边长为4,四棱锥的高为2,所以体积cm3........................................................................5分(2)由三视图知,四棱锥的侧面三角形的高.该几何体表面积为cm2....................10分18.(12分)解:(1)B(1,1),C(7,3),BC的中点为M(4,2).又A(2,4)在BC边上的中线上,所求直线方程为=,即BC边上的中线所在直线的方程为x+y-6=0.........................................6分(2)B(1,1),C(7,3),直线BC的斜率为=.而BC 边上的高所在直线与直BC垂直,BC边上的高所在直线的斜率为-3.又A(2,4)在BC边上的高上,所求直线方程为y-4=-3(x-2),即BC边上的高所在直线的方程为3x+y-10=0....................................12分19.(12分)解:(1)如图所示,连接CD1.∵P、Q分别为AD1、AC的中点.∴PQ∥CD1.而CD1平面DCC1D1,PQ//平面DCC1D1,∴PQ∥平面DCC1D1......................................6分(2)如图,取CD中点H,连接EH,FH.∵F、H分别是C1D1、CD的中点,在平行四边形CDD1C1中,FH//D1D.而D1D⊥面ABCD,∴FH⊥面ABCD,而AC面ABCD,∴AC⊥FH.又E、H分别为BC、CD的中点,∴EH∥DB.而AC⊥BD,∴AC⊥EH.因为EH、FH是平面FEH内的两条相交直线,所以AC⊥平面EFH,而EF平面EFH,所以AC⊥EF............................................12分20.(12分)解:(1)直线方程为,可化为对任意都成立,所以,解得,所以直线恒过定点..........................4分设定点为当变化时,直线时,点到直线的距离最大,可知点与定点的连线的距离就是所求最大值,即,此时直线过点且与垂直,∴,解得故直线的方程为................8分(2)由于直线经过定点.直线的斜率存在且,可设直线方程为可得与轴、轴的负半轴交于,两点∴,,解得.∴ 当且仅当时取等号,面积的最小值为4,此时直线的方程为:,即:..............................12分21.(12分)(1)证明:取中点,连接,,,即又,,四边形为平行四边形,,,分别是,的中点,,又平面,平面,平面,同理平面,又平面,,平面平面,平面,平面........................................6分(2)解:平面,且,平面,过点作平面的高,交平面于点,,,,,面面且面,面,,,,,记点到平面的距离为,,作,则有且,,,,点到平面的距离为............................12分22.(12分)(1)证明:,分别为,中点,//.,..,.又=,平面. 又平面,平面平面...............3分(2)解:,,,,,两两互相垂直.以为坐标原点,建立如图所示的空间直角坐标系,依题意有,,,,,.则,,,,,.设平面的一个法向量,则有,即,令得,.所以.设直线与平面所成角为,则.故直线与平面所成角的正弦值为.......................7分(3)解:假设线段上存在一点,使二面角的余弦值为.设,,则,即.,,.易得平面的一个法向量为.设平面的一个法向量,则有,即,令,则.若二面角的余弦值为,则有,即,解得,,.又因为,所以.故线段上存在一点,使二面角的余弦值为,且...............12分

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2021-12-23 11:00:06 页数:8
价格:¥3 大小:919.72 KB
文章作者:随遇而安

推荐特供

MORE