首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
湖北省孝感高级中学2021届高三上学期12月联考数学试题 Word版含答案
湖北省孝感高级中学2021届高三上学期12月联考数学试题 Word版含答案
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/19
2
/19
剩余17页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
孝感高级中学2021届高三上学期12月联考数学考生注意:1.本试卷分选择题和非选择题两部分。满分150分,考试时间120分钟。2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。3.考生作答时,请将答案答在答题卡上。选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。4.本卷命题范围:新高考范围。一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,,则()A.B.C.D.2.已知是虚数单位,则()A.B.C.D.3.甲、乙两人下棋,和棋的概率为50%,甲不输的概率为90%,则乙不输的概率为()A.60%B.50%C.40%D.30%4.的展开式中常数项为()A.B.C.84D.6725.国防部新闻发言人在9月24日举行的例行记者会上指出:“台湾是中国不可分割的一部分,解放军在台海地区组织实兵演练,展现的是捍卫国家主权和领土完整的决心和能力”,如图为我空军战机在海面上空绕台巡航已知海面上的大气压强是,大气压强(单位:)和高度(单位:)之间的关系为(是自然对数的底数,是常数),根据实验知高空处的大气压强是 ,则我战机在高空处的大气压强约是(结果保留整数)()A.B.C.D.6.如图,在平行四边形中,,分别是,的中点,已知,,则()A.B.C.D.7.在公差为1的等差数列中,已知,,若对任意的正整数,恒成立,则实数的取值范围是()A.B.C.D.8.已知,对任意的,恒成立,则实数的最小值是()A.B.C.D.二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。9.下列命题为真命题的是()A.若,则 B.若,则C.若,,则D.若,则10.将函数的图象向左平移个单位长度,再将所得函数图象上的所有点的横坐标变为原来的倍,得到函数(,,)的图象,已知函数的部分图象如图所示,则下列关于函数的说法正确的是()A.的最小正周期为B.在区间上单调递减C.的图象关于直线对称D.的图象关于点成中心对称11.已知双曲线:(),若圆与双曲线的渐近线相切,则()A.双曲线的实轴长为6B.双曲线的离心率 C.点为双曲线上任意一点,若点到的两条渐近线的距离分别为,,则D.直线与交于,两点,点为弦的中点,若(为坐标原点)的斜率为,则12.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵;阳马指底面为矩形,一侧棱垂直于底面的四棱锥;鳖臑指四个面均为直角三角形的四面体.如图,在堑堵中,,,则下列说法正确的是()A.四棱锥为阳马B.三棱锥为鳖臑C.当三棱锥的体积最大时,D.记四棱锥的体积为,三棱锥的体积为,则三、填空题:本题共4小题,每小题5分,共20分。13.若,则______.14.已知为抛物线:的焦点,点,在抛物线上,且分别位于轴的上、下两侧,若的面积是(为坐标原点),且,则直线的斜率是______. 15.经纬度是经度与纬度的合称,它们组成一个坐标系统,称为地理坐标系统,它是一种利用三度空间的球面来定义地球上的空间的球面坐标系统,能够标示地球上的任何一个位置,经度是个二面角,是两个经线平面(经线与地轴所成的半平面)的夹角,某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角.纬度是个线面角,某一点的纬度是指该点与地球球心的连线和地球赤道面所成的线面角.城市位置东经,北纬,城市位置为东经,北纬,若地球的半径为,则过,两点和地心的平面截球所得的截面圆的劣弧的长为______.16.若函数图象在点处的切线方程为,则的最小值为______.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(本小题满分10分)在①,②,③这三个条件中任选一个,补充在下面问题中,并给出解答.问题:在中,角,,的对边分别为,,,,,且______.求的面积.注:如果选择多个条件分别解答,按第一个解答计分.18.(本小题满分12分)已知数列满足().(1)求数列的通项公式;(2)若,则在数列中是否存在连续的两项,使得它们与后面的某一项依原来顺序构成等差数列?若存在,请将这样的两项都探究出来;若不存在,请说明理由.19.(本小题满分12分)电子邮件是一种用电子手段提供信息交换的通信方式,是互联网应用最广的服务,通过网络的电子邮件系统,用户可以以非常低廉的价格(不管发送到哪里,都只需负担网费)、非常快速的方式(几秒钟之内可以发送到世界上任何指定的目的地),与世界上任何一个角落的网络用户联系,我们在用电子邮件时发现了一个有趣的现象,中国人的邮箱名称里含有数字的比较多,而外国人邮箱名称里含有数字的比较少,为了研究邮箱名称里含有数字是否与国籍有关,随机调取40个邮箱名称,其中中国人的20个,外国人的20个,在20个中国人的邮箱名称中有15个含数字,在20个外国人的邮箱名称中有5个含数字.(1)根据以上数据填写列联表: 中国人外国人总计邮箱名称里有数字邮箱名称里无数字总计40(2)能否有99%的把握认为“邮箱名称里含有数字与国籍有关"?(3)用样本估计总体,将频率视为概率,在中国人邮箱名称里和外国人邮箱名称里各随机调取6个邮箱名称,记“6个中国人邮箱名称里恰有3个含数字”的概率为,“6个外国人邮箱名称里恰有3个含数字"的概率为,试比较与的大小.附:临界值参考表与参考公式()0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)20.(本小题满分12分)在四棱锥中,底面为矩形,,平面平面,,,点在线段上(端点除外),平面交于点.(1)求证:四边形为直角梯形;(2)若,求直线与平面所成角的正弦值. 21.(本小题满分12分)已知椭圆:()的左、右焦点分别为,,过且斜率为的直线与椭圆的一个交点在轴上的射影恰好为.(1)求椭圆的方程;(2)如图,下顶点为,过点作一条与轴不重合的直线,该直线交椭圆于,两点,直线,分别交轴于点,.求证:与的面积之积为定值,并求出该定值.22.(本小题满分12分)已知函数().(1)当时,求函数的极小值;(2)当时,若是函数的极大值点,求的取值范围.高三数学参考答案、提示及评分细则1.B因为集合,,所以.故选B.2.C.故选C.3.A 设,,,则,互斥,且,则,即,乙获胜的概率为10%,则乙不输的概率为60%.故选A.4.B,令,得,所以常数项为.故选B.5.A当时,,即,所以高空处的大气压强约为.故选A.6.B设,,则,.两式相加、相减易得,,则.故选B.7.D由题意知,所以,所以点在函数的图象上;由知,数列的最大项,所以,所以.故选D.8.C因为所以为奇函数,且在上单调递增,所以,所以,所以问题转化为“对任意的,恒成立”.当时显然不成立,则时,解得.故选C. 9.AC对于A,因为,所以,所以,故A正确;对于B,,,不成立;对于C,因为,,所以,所以,故C正确;对于D,当时不成立.故选AC.10.BC由图象可得,,,所以,(),所以(),由,即,得,将的图象上的所有点的横坐标变为原来的倍,再向右平移个单位长度得到函数的图象,即,所以的最小正周期为,当时,取最大值,所以的图象关于对称,当时,,所以单调递减,故选BC.11.BCD由题意知的渐近线方程为,所以,解得,所以半焦距,所以,故A错误,B正确;设,所以,,所以,故C正确;设,,由点差法易得,故D正确.故选BCD.12.ABC堑堵为直三棱柱,其中侧棱平面,为矩形,,则四棱锥为阳马;三棱锥中,平面,平面,则三棱锥 的四个面均为直角三角形,所以三棱锥为鳖臑;三棱锥的体积最大时,由于高,则的面积最大,而,所以,所以,当且仅当时,取等号,即当时,面积取得最大值,三棱锥的体积最大;,,则.故选ABC.13..14.设,.由抛物线得,而,得,则,由,则,又,结合,解得,,所以直线的斜率是.15.设球心为,由题意和劣弧所对的圆心角,所以弧长为.16.切点为,,所以,则图象在处的切线的斜率为,则所求切线的方程为,即,则,,则.对于函数,,当时,;当时,;所以函数在取得极小值,亦即最小值,则的最小值为.17.解:若选择条件①,由正弦定理,得. 由余弦定理知.由,得,由及正弦定理,得,将和代入,解得,所以,,所以.若选择条件②,由已知,得,即,所以.由,得,由余弦定理,得.由及正弦定理,得,将和代入,解得,所以,,所以.若选择条件③,由正弦定理,得,所以. 由,得,由,解得.由,得,由余弦定理,得.由及正弦定理,得,将和代入,解得,所以,,所以.18.解:(1)由题意,得,当时,,两式相减,得,即.当时,,也满足上式,所以数列的通项公式.(2),法一:,,显然不适合;,适合,即,,构成公差为的等差数列;,适合,即,,构成公差为的等差数列;当时,假设,,()成等差数列,则, 即,而当时,,所以不是数列中的项,所以当时,不存在连续两项,使之与数列后面某一项依原顺序成等差数列.综上,,和,适合条件.法二:,显然不适合;当时,设,,()成等差数列,则,即,解得.当时,,则,,构成公差为的等差数列;当时,,则,,构成公差为的等差数列;当时,,则,所以不是数列中的项,所以当时,不存在连续两项,使之与数列后面某一项依原顺序成等差数列.综上,,和,适合条件.19.解:(1)填写列联表如下:中国人外国人总计邮箱名称里有数字15520邮箱名称里无数字51520总计202040(2).因为根据临界值表可知,所以有99%的把握认为“邮箱名称里含有数字与国籍有关”.(3)用样本估计总体,将频率视为概率,根据(1)中列联表,中国人邮箱名称里含数字的概率为 ,外国人邮箱名称里含数字的概率为.设“6个中国人邮箱名称里含数字”的人数为随机变量,“6个外国人邮箱名称里含数字”的人数为随机变量,根据题意,得,,则,,所以.20.(1)证明:因为,平面,平面,所以平面.又平面,平面平面,所以.又,所以四边形为梯形.因为,平面平面,平面平面,平面.所以平面,又平面,所以,所以四边形为直角梯形.(2)解:法一:在直角三角形中,,,则,所以为的中点,又,所以为的中点.因为,又由(1)知,平面,所以,,两两垂直. 以为原点,分别以,,的方向为轴,轴,轴的正方向,建立空间直角坐标系,则,,,,从而,所以,,.设平面的法向量为,则即取,则.设直线与平面所成的角为,则,故直线与平面所成角的正弦值为.法二:因为,,所以,因为,所以,所以为的中点,所以.由(1)知平面,又平面,所以,又,所以平面,所以直线与平面所成的角就是,又因为,所以.又,所以, 所以直线与平面所成角的正弦值为.21.解:(1)过且斜率为的直线方程为,令,则,由题意可得解得,,所以椭圆的方程为.(2)由题意知,直线的斜率存在,设直线的方程为.设,,将代入,得,所以,,由,,所以,,直线的方程为,令,解得,则,同理可得,所以 .所以与的面积之积为定值,该定值为.22.解:(1)函数的定义域为,.设,则当时,,则在上为增函数,且,当时,,即;当时,,即,所以在上单调递减,在上单调递增,所以是的极小值点,且的极小值为.(2)当时,由(1)知.(ⅰ)当,即时,,则在上为减函数,又.当时,,即;当时,,即,所以在上为增函数,在上为减函数, 所以是的极大值点,满足题意.(ⅱ)当时,令得,①当,即时,取,得,则在上为减函数,当时,,即;当时,,即,所以在上为增函数,在上为减函数,所以是的极大值点,满足题意.②当,即时,,当时,;当时,,所以在上为增函数,在上为减函数,所以,从而在上为减函数,此时,无最大值.③当,即时,取,得,则在上为增函数,当时,,即,这与“在处有极大值”矛盾,此时不满足题意.综上,所求实数的取值范围是.(说明:若学生由题易知,根据转化求解,这不是充要条件,没有运用数学语言和数学符号进行代数推理,可扣2/3的分)
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
湖北省孝感市中考物理试卷word版含答案
湖北省部分重点中学2022届高三上学期开学联考语文试题 Word版含答案
湖北省部分重点中学2022届高三上学期新起点联考语文试题 Word版含答案
湖北省九师联盟2021届高三上学期12月联考数学试卷(新高考) Word版含答案
湖南省联考联合体2021届高三上学期12月联考数学试题 Word版含答案
江苏省苏州2021届高三上学期12月联考数学试题 Word版含答案
湖北省孝感市普通高中2022届高三上学期期中联考 语文 Word版含答案
湖北省九师联盟2021届高三上学期12月联考生物试卷(新高考) Word版含答案
湖北省孝感高级中学2021届高三上学期12月联考生物试题 Word版含答案
湖北省腾云联盟2023届高三上学期8月联考语文试题 Word版含答案
文档下载
收藏
所属:
高中 - 数学
发布时间:2021-10-08 09:49:55
页数:19
价格:¥5
大小:1.19 MB
文章作者:fenxiang
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划