首页

湖北省部分重点中学2020-2021学年高二上学期12月联考试题 数学 Word版含答案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/9

2/9

剩余7页未读,查看更多内容需下载

www.ks5u.com绝密★启用前湖北省部分重点中学高二年级12月联考数学试卷★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。写在试卷、草稿纸和答题卡上的非答题区域均无效。4.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题p:∃m∈R,方程x2+mx+1=0有实根,则命题p的否定是A.对任意m∈R,方程x2+mx+1=0无实根B.存在m∈R,使方程x2+mx+1=0无实根C.不存在实数m,使方程x2+mx+1=0无实根D.至多有一个实数m,使方程x2+mx+1=0有实根2.已知一组数据x1、x2、x3、x4、x5的平均数是2,那么另一组数据3x1-2、3x2-2、3x3-2、3x4-2、3x5-2的平均数是A.2B.3C.4D.83.一个口袋中装有大小相同的5个红球和3个白球,从中任取3个球,那么互斥而不对立的事件是A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球4.已知a,b表示不同的直线,α,β表示不同的平面,以下命题正确的是A.若a∥b,a∥α,则b∥αB.若a⊥α,b∥α,则a⊥bC.若a⊥b,b∥α,则a⊥αD.若a∥α,α∥β,则a∥β5.若直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,则直线l2在y轴上的截距为-9- A.2或B.-2或C.2D.6.已知=(2,-1,4),=(-1,1,-2),=(7,5,m),若,,共面,则实数m的值为A.B.14C.12D.7.已知抛物线C:y2=8x的焦点为F,过点F的直线与抛物线C相交于A,B两点,则的最小值为A.4B.8C.4D.28.正方体ABCD-A1B1C1D1的棱长为3,点M在棱AB上,且AM=1,点P是正方体下底面ABCD内(含边界)的动点,且动点P到直线A1D1的距离与点P到点M的距离的平方差为9,则动点P到点B的距离的最小值是A.2B.C.D.二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。9.下面关于空间几何体叙述正确的是A.底面是正多边形的棱锥是正棱锥B.有两个面互相平行,其余各面都是梯形的多面体是棱台C.正四棱柱都是长方体D.直角三角形以其直角边所在直线为轴旋转一周形成的几何体是圆锥10.已知F1,F2分别是椭圆C:的左右焦点,A1,A2是椭圆长轴端点,点P是椭圆上异于长轴端点的一点,则下列结论正确的是A.椭圆C的离心率e=B.以PF1为直径的圆与以A1A2为直径的圆内切C.存在点P使=0D.△PF1F2面积的最大值为1211.已知在三棱锥P-ABC中,AP,AB,AC两两互相垂直,AP=5cm,AB=4cm,AC=3cm,点O为三棱锥P-ABC的外接球的球心,下列说法正确的是A.球O的表面积为50πcm2-9- B.异面直线BC与AO所成角的余弦值为C.直线BC与平面PAC所成角的正切值为D.AO⊥平面PBC12.已知圆O:x2+y2=13,A、B为圆O上的两个动点,且AB=4,M为弦AB的中点,C(4,a),D(4,a+4)。当A,B在圆O上运动时,始终有∠CMD为锐角,则实数a的可能取值为A.-6B.0C.1D.2三、填空题:本题共4小题,每小题5分,共20分。13.某厂家生产甲、乙、丙三种不同类型的饮品,其产量之比为2:3:4。为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为。14.大小相同的4个小球上分别写有数字1,2,3,4,从这4个小球中随机抽取2个小球,则取出的2个小球上的数字之和为奇数的概率为。15.已知圆x2+y2-2x-3=0与抛物线y=2px2(p>0)的准线相切,则p=。16.已知F1,F2是双曲线Γ:的左、右焦点,点P为双曲线Γ上异于顶点的点,直线l分别与以PF1,PF2为直径的圆相切于A,B两点,若直线l与F1F2的夹角为θ(0<θ≤),则cosθ=。四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(本小题满分10分)已知命题p:“曲线C1:表示焦点在x轴上的椭圆”,命题q:“曲线C2:表示双曲线”。使命题p是真命题的m的范围记为集合A,使命题q是真命题的m的范围记为集合B。若m∈A是m∈B的必要不充分条件,求t的取值范围。18.(本小题满分12分)目前,新高考改革正在全国各地分阶段分地域稳步推进,根据“两依据,一参考”-9- 的标准,形成综合评价、多元录取考试招生格局,这使学业水平考试提到了前所未有的新高度。为了更好地了解学生对即将进行的学业水平考试的复习状况,某校对某年级2000名同学进行了适应性考试,考试结束后,发现学生的语文和数学成绩全部介于50分与100分之间。现抽取100名同学的语文和数学成绩进行研究,先对语文成绩进行分析,其频率分布直方图如图所示,其中成绩分组区间是:[50,60)、[60,70)、[70,80)、[80,90)、[90,100]。(1)若语文成绩在[90,100]的认为学生语文成绩优秀,求该样本在这次考试中语文成绩优秀的人数;(2)根据频率分布直方图,估计这100名学生语文成绩的中位数;(答案四舍五入,保留整数)(3)若这100名学生的语文成绩分数段的人数x与数学成绩相应分数段的人数y之比如下表所示,试估计这100名同学数学成绩的平均数。(同一组中的数据用该组区间的中点值作代表)19.(本小题满分12分)如图,已知圆心坐标为M(,1)的圆M与x轴及直线y=x均相切,切点分别为A、B,另一圆N与圆M、x轴及直线y=x均相切,切点分别为C、D。(1)求圆M和圆N的方程;(2)过B点作MN的平行线l,求直线l被圆N截得的弦的长度。20.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,P、Q分别是AA1、A1C1的中点。-9- (1)设棱BB1的中点为D,证明:C1D∥平面PQB1;(2)若AB=2,AC=AA1=AC1=4,∠AA1B1=60°,且平面AA1C1C⊥平面AA1B1B,求三棱锥P-QA1B1的体积。21.(本小题满分12分)在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD为直角梯形,BC∥AD,∠ADC=90°,BC=CD=AD=1,E为线段AD的中点,过BE的平面与线段PD,PC分别交于点G,F。(1)求证:GF⊥PA;(2)若PA=PD=2,是否存在点G,使得直线PB与平面BEGF所成角的正弦值为,若存在,请确定G点的位置;若不存在,请说明理由。22.(本小题满分12分)已知点F1,F2分别为椭圆C:的左右焦点,其焦距为2,椭圆C与y轴正半轴交点为A,且△AF1F2为等边三角形。(1)求椭圆C的标准方程;(2)过点A作斜率为k1、k2(k1k2≠0)的两条直线分别交椭圆C于异于点A的两点M、N。证明:当k2=时,直线MN过定点。湖北省部分重点中学高二年级12月联考数学试卷参考答案题号123456789101112答案ACCBDBCACDBDABCAD-9- 13.2414.15.16.17.解:若P为真:则解得,即集合………………3分若q为真,则,即集合…………………6分因是的必要不充分条件,则,即解得…………………10分18.解:(1)∵∴………………2分∴成绩在的频数为∴样本数据中成绩优秀的人数为5人………………4分(2)∵区间在[50,70]的概率和为0.05+0.4=0.45∴中位数在70~80之间.设中位数为x,则解得即估计语文成绩的中位数为72………………8分(3)由题意,数学成绩在[50,60)上的有5人,[60,70)有20人,[70,80)有40人,[80,90)有25人,[90,100]有10人.∴数学成绩的平均数为………………12分19.解:(1)由于圆M与∠BOA的两边相切,故M到OA及OB的距离均为圆M的半径,则M在∠BOA的角平分线上,同理,N也在∠BOA的角平分线上,即O、M、N三点共线,且OMN为∠BOA的角平分线,∵M的坐标为∴M到x轴的距离为1,即:圆M的半径1,∴圆M的方程为……………………3分设圆N的半径为r,由Rt△OAM-Rt△OCN,得:OM:ON=MA:NC,即∴圆N的方程为:…………6分-9- (2)由对称性可知,所求弦长等于过A点的MN的平行线被圆N截得弦长,此弦所在直线方程为,圆心N到该直线的距离,则弦长…………………………12分20.(1)证明:连接是的中点,是的中点,可由棱柱的性质知,且;四边形是平行四边形分别是、的中点平面平面平面………………6分(2)在面内作于点,平面平面平面,,,是边长为的正三角形于是.………………12分21.解:(1)证明:,且为线段的中点,,又,四边形为平行四边形,,又平面,平面,平面,又平面平面,,………………3分又,且平面平面,平面平面,平面,平面,又平面,.………………6分(2)存在,为的靠近点的三等分点.,为线段的中点,,又平面平面,平面,以为坐标原点,的方向为轴正方向建立如图所示的空间直角坐标系,则,,,,则,,,设,则,-9- 设平面的法向量为,则即令,可得为平面的一个法向量,………………9分设直线与平面所成角为,于是有;解得或(舍),所以存在点,使得直线与平面所成角的正弦值为,此时,即为上靠近点的四等分点.………………12分22.解:(1)由题意,,,,因此,椭圆的标准方程为.………………3分(2)由题意不妨设,设点,联立,消去化简得,………………5分且,,,,,∴代入,化简得,-9- ………………8分化简得,,,,………………10分直线,因此,直线过定点.………………12分-9-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2021-10-08 09:49:54 页数:9
价格:¥5 大小:736.21 KB
文章作者:fenxiang

推荐特供

MORE