首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
模拟考试
>
2022年新高考数学临考模拟卷3 (Word版附解析)
2022年新高考数学临考模拟卷3 (Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/22
2
/22
剩余20页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022年高考临考模拟卷(三)数学(新高考卷)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。4.考试结束后,将本试卷和答题卡一并交回。一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.设集合,则( )A.B.C.D.【答案】B【详解】解:因为集合,所以,故选:B.2.已知复数z满足.则( )A.1B.2C.D.【答案】D【详解】,所以.故选:D3.如图1,在高为h的直三棱柱容器中,,.现往该容器内灌进一些水,水深为2,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为(如图2),则容器的高h为( )A.3B.4C.D.6【答案】A【详解】在图1中,在图2中,,.故选:A.4.设函数,,,则函数的图象与轴所围成图形中的封闭部分面积是( )A.6B.8C.7D.9【答案】C【详解】图象,如图1,把的图象向下平移一个单位长度,再把x轴下方部分沿着x轴翻折,得到的图象,如图2,再把的图象向下平移2个单位长度,在把把x轴下方部分沿着x轴翻折,得到的图象,如图3,则与轴所围成图形中的封闭部分面积为故选:C5.已知等差数列中,,设函数,记,则数列的前项和为( )A.B.C.D.【答案】D【详解】,由,可得,当时,,故函数的图象关于点对称,由等差中项的性质可得,所以,数列的前项和为.故选:D.6.过抛物线焦点F的直线与该抛物线及其准线都相交,交点从左到右依次为A,B,C.若,则线段BC的中点到准线的距离为( )A.3B.4C.5D.6【答案】B【详解】由抛物线的方程可得焦点,渐近线的方程为:,由,可得由于抛物线的对称性,不妨假设直线和抛物线位置关系如图示:作垂直于准线于,准线交x轴与N,则,故,故,而x轴,故,所以直线的倾斜角为,所以直线的方程为,设,,,,联立,整理可得:,可得,所以的中点的横坐标为3,则线段的中点到准线的距离为,故选:B.7.如图为一个直角三角形工业部件的示意图,现在AB边内侧钻5个孔,在BC边内侧钻4个孔,AB边内侧的5个孔和BC边内侧的4个孔可连成20条线段,在这些线段的交点处各钻一个孔,则这个部件上最多可以钻的孔数为( ).A.190B.199C.69D.60【答案】C【详解】在AB边内侧的5个孔和BC边内侧的4个孔中各取两个可构成四边形,当这些四边形对角线的交点不重合时,钻孔最多,所以最多可以钻的孔数为个.故选:C8.已知函数,直线是曲线的一条切线,则的取值范围是( )A.B.C.D.【答案】B【详解】设切点为,,曲线在切点处的切线方程为,整理得,所以.令,则.当时,,单调递减;当时,,单调递增.故,则的取值范围是.故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知向量,将向量绕坐标原点逆时针转角得到向量,则下列说法正确的是( )A.B.C.D.【答案】BCD【详解】以,为邻边作平行四边形,则,即,故,即不正确,正确;∵,∴可设,又∵,∴由余弦定理得,即正确;∵,∴四边形为菱形,又∵,,故,即正确.故选:.10.睡眠很重要,教育部《关于进一步加强中小学生睡眠管理工作的通知》中强调“小学生每天睡眠时间应达到10小时,初中生应达到9小时,高中生应达到8小时”.某机构调查了1万个学生时间利用信息得出下图,则以下判断正确的有( )A.高三年级学生平均学习时间最长B.中小学生的平均睡眠时间都没有达到《通知》中的标准,其中高中生平均睡眠时间最接近标准C.大多数年龄段学生平均睡眠时间长于学习时间D.与高中生相比,大学生平均学习时间大幅下降,释放出的时间基本是在睡眠【答案】BC【详解】根据图象可知,高三年级学生平均学习时间没有高二年级学生平均学习时间长,A选项错误.根据图象可知,中小学生平均睡眠时间都没有达到《通知》中的标准,高中生平均睡眠时间最接近标准,B选项正确.学习时间大于睡眠时间的有:初二、初三、高一、高二、高三,占比.睡眠时间长于学习时间的占比,C选项正确.从高三到大学一年级,学习时间减少,睡眠时间增加,所以D选项错误.故选:BC11.已知圆,一条光线从点射出经x轴反射,下列结论正确的是( ).A.圆C关于x轴的对称圆的方程为B.若反射光线平分圆C的周长,则入射光线所在直线方程为C.若反射光线与圆C相切于A,与x轴相交于点B,则D.若反射光线与圆C交于M、N两点,则面积的最大值为【答案】ABD【详解】由,得,则圆心,半径为1,对于A,圆关于x轴的对称圆的方程为,所以A正确,对于B,因为反射光线平分圆C的周长,所以反射光线经过圆心,所以入射光线所在的直线过点,因为入射光线过点,所以入射光线所在的直线的斜率为,所以入射光线所在直线方程为,即,所以B正确,对于C,由题意可知反射光线所在的直线过点,则,因为,所以,所以C错误,对于D,设,,则圆心到直线的距离为,,所以,所以当,即时,面积取得最大值,所以D正确,故选:ABD12.如图,梯形ABCD中,,,M,P,N,Q分别是边AB,BC,CD,DA的中点,将△ACD以AC为轴旋转一周,则在此旋转过程中,下列说法正确的是( )A.MN和BC不可能平行B.AB和CD有可能垂直C.若AB和CD所成角是,则D.若面ACD⊥面ABC,则三棱锥的外接球的表面积是28π【答案】AD【详解】对于A,若MN和BC平行,则N应该在DM上,但在旋转过程中,N不可能在DM上,所以MN和BC不可能平行,则A正确;对于B,当不在平面中时,若,因为,,故平面,而平面,故平面平面,过作,垂足为,因为平面平面,平面,故平面,而平面,故,故,矛盾,当当在平面中时,也不成立,故B错误.对于C,因为在未旋转时AB和CD是平行的,若某一时刻AB和CD所成角是,即CD与旋转后的所成角为,如下图.当△ACD旋转到,即在平面ABCD内,此时因为,则,所以,AB和CD所成角是,即和CD所成角是.此时旋转到,取AC的中点,连接,则,所以,则在三角形中,,所以C错误;对于D,因为,所以的外接圆的圆心在的中点上,在中,因为,所以为钝角三角形,则外接圆的圆心在外,则的中垂线和的中垂线的交点即为,过做平面的垂线,过做平面的垂线,两垂线的交于点,与重合,即即为外接球的球心,则,则,,所以,则三棱锥的外接球的表面积是,所以D正确.故选:AD.三、填空题:本题共4小题,每小题5分,共20分13.函数是偶函数,当时,,则不等式的解集为______.【答案】或【详解】因为当时,单调递增,且,所以等价于.因为为偶函数,所以,解得或,即不等式的解集为或故答案为:或.14.已知双曲线的两条渐近线均与圆相切,则该双曲线的离心率等于___________.【答案】##【点睛】双曲线的渐近线方程为,即,圆的圆心为,半径为2,因为双曲线的两条渐近线均与圆相切,所以,即,所以,,所以,则,所以离心率,故答案为:15.将一段长为100cm的铁丝截成两段,一段弯成正方形,一段弯成圆,当正方形与圆形面积之和最小时,圆的周长为________cm.【答案】【详解】设弯成圆的一段铁丝长为,则另一段长为100-x.设正方形与圆形的面积之和为S,则正方形的边长,圆的半径.故.所以,令S′=0,则x=.由于在内,函数只有一个导数为的点,则问题中面积之和的最小值显然存在,故当x=cm时,面积之和最小.故答案为:.16.将正三角形(1)的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(2);将图(2)的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(3);如此类推,将图()的每条边三等分,并以中间的那一条线段为底边向外作三角形,然后去掉底边,得到图.上述作图过程不断的进行下去,得到的曲线就是美丽的雪花曲线.若图(1)中正三角形的边长为1,则图()的周长为__________,图()的面积为___________.【答案】 【详解】解:第一个三角形的周长为,观察发现:第二个图形在第一个图形的周长的基础上多了实验室的周长的,第三个在第二个的基础上多了其周长的,所以第二个图形的周长为,第三个图形的周长为,第四个图形的周长为,……,所以第个图形的周长是第一个周长的倍,所以第个图形的周长为,由题意可知,第个图形的边长都相等,且长度变为原来的,则边长的递推公式为,,所以,边数的递推公式为,,则,第一个图形的面积为,当时,,则四、解答题:本小题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤.17.已知是数列的前项和,,___________.①,;②数列为等差数列,且的前项和为.从以上两个条件中任选一个补充在横线处,并求解:(1)求;(2)设,求数列的前项和.【答案】(1)条件选择见解析,(2)【解析】(1)解:选条件①:,,得,所以,,即数列、均为公差为的等差数列,于是,又,,,所以;选条件②:因为数列为等差数列,且的前项和为,得,所以,所以的公差为,得到,则,当,.又满足,所以,对任意的,.(2)解:因为,所以.18.羽毛球看似小巧,但羽毛球运动却有着丰富的文化内涵,简洁的场地、几个人的组合,就可以带来一场充满乐趣、斗智斗勇、健身休闲的竞技比赛,参与者可以根据自己的年龄、性别、身体条件、技术水平,选择适合自己的运动强度和竞技难度.小胡和小李两名员工经常利用业余时间进行羽毛球比赛,规定每一局比赛中获胜方记1分,失败方记0分,没有平局,谁先获得5分就获胜,比赛结束,假设每局比赛小胡获胜的概率都是,各局比赛的结果相互独立.(1)求比赛结束时恰好打了6局的概率;(2)若现在是小胡的比分落后,记表示结束比赛还需打的局数,求的分布列及数学期望.【答案】(1)(2)234期望【解析】(1)恰好打了6局小胡获胜的概率是,恰好打了6局小李获胜的概率为,所以结束时恰好打了6局的概率为.(2)的所有可能取值为,则,,,所以的分布列如下:234所以.19.在中,角的对边分别,.(1)求;(2)若的周长为4,面积为,求.【答案】(1)(2)【解析】(1)解:因为,所以,即,所以,因为,所以,所以又,故,所以,即;(2)解:由余弦定理,得,即,又,所以,即整理得,由面积为,即,所以,.20.如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)已知是边长为1的等边三角形,且三棱锥的体积为,若点在棱上,且二面角的大小为,求.【答案】(1)证明见解析(2)2【解析】(1)证明:因为,为的中点,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以,(2)取的中点,因为为等边三角形,所以,过作∥,与交于,则,由(1)可知平面,因为平面,所以,所以两两垂直,所以以为原点,所在的直线分别为轴建立空间直角坐标系,如图所示,因为是边长为1的等边三角形,为的中点,所以,因为三棱锥的体积为,所以,所以,所以,设(),则,则因为平面,所以是平面的一个法向量,设平面的一个法向量为,因为,所以,令,则,,所以,因为二面角的大小为,所以,化简得,解得或(舍去),所以,21.已知椭圆的离心率为,且点在椭圆上.(1)求椭圆的方程;(2)若四边形的顶点在椭圆上,且对角线过原点,直线和的斜率之积为,证明:四边形的面积为定值.【答案】(1);(2)证明见详解.【解析】(1)离心率为,则∴又∵点是椭圆上一点,∴,又解得因此,椭圆的方程为(2)证明::当直线AB的斜率不存在时,不妨设,则,又,解得,根据椭圆的对称性,不妨取,则,则,所以;当直线AB斜率存在时,设直线AB的方程为,设点联立,得,则因为,得,即,所以,,解得,,原点到直线AB的距离为,因为且所以(定值),综上述四边形ABCD的面积为定值.22.已知函数,曲线在点处的切线方程为.(1)求,的值;(2)若,是两个正数,且,证明:.【答案】(1)(2)证明见解析.【解析】(1)解:,因为曲线在点处的切线方程为,所以,即,解得所以(2)解:由(1)知,令,所以,所以函数在上单调递增,因为,是两个正数,且所以,不妨设,当时,命题显然成立,得证.当时,令所以所以当时,,故所以函数在上单调递增,所以即,所以,因为,所以所以,因为函数在上单调递增,所以,即.综上,,证毕.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2021年高考真题--数学(新高考全国Ⅱ卷)(Word版附解析)
2022届高考数学考前20天冲刺模拟试卷(3)(Word版附解析)
高考数学临考打靶卷信息题
22年高考数学临考最后热身卷
2022年新高考数学临考模拟卷1 (Word版附解析)
2022年新高考数学临考模拟卷2 (Word版附解析)
2022年新高考数学临考模拟卷4 (Word版附解析)
2022年新高考数学临考模拟卷5 (Word版附解析)
2022年新高考数学临考模拟卷6 (Word版附解析)
2022届高考数学临考仿真模拟试题(新高考区适用)(Word版含解析)
文档下载
收藏
所属:
高考 - 模拟考试
发布时间:2022-08-26 11:00:03
页数:22
价格:¥3
大小:1.78 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划