首页

2022年高考数学高频考点2、函数

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

2022年高考数学高频考点2、函数命题动向函数既是高中数学最重要的基础知识又是高中数学的主干知识,还是高中数学的主要工具,在高考中占有举足轻重的地位,其考查的内容是丰富多彩的,考查的方式是灵活多变的,既有以选择题、填空题形式出现的中低档试题,也有以解答题形式出现的中高档试题,更有以综合了函数、导数、不等式、数列而出现的压轴题.在试卷中往往是以选择题、填空题的形式考查函数的基础知识和基本方法,以解答题的形式考查函数的综合应用.押猜题3已知是定义在R上的偶函数,且对于任意的R都有若当时,则有()A.B.C.D.解析的最小正周期为4.因为是定义在R上的偶函数,则则因为当时,为增函数,故故选A.点评本题集函数的周期性、奇偶性、单调性等于一体考查,是高考命题者惯用的手法,充分体现了高考选择题的“小、巧、精、活”的特点,是一道难得的好题.押猜题4(理)已知函数(1)求函数的单调区间;(2)若当时(其中),不等式恒成立,求实数的取值范围;(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围.解析因为所以(1)令或,所以的单调增区间为和;3/3\n令或所以的单调减区间为和(2)令或函数在上是连续的,又所以,当时,的最大值为故时,若使恒成立,则(3)原问题可转化为:方程在区间上恰好有两个相异的实根.令则令解得:当时,在区间上单调递减,当时,在区间上单调递增.在和处连续,又且当时,的最大值是的最小值是在区间上方程恰好有两个相异的实根时,实数的取值范围是:点评本题考查导数在研究函数性质,不等式恒成立,参数取值范围等方面的应用,充分体现了导数的工具和传接作用.作为一道代数推理题,往往处在“把关题”或“压轴题”的位置,具有较好的区分和选拔功能.(文)已知函数与函数互为反函数,且函数与函数也互为反函数,若,则=()A.0B.1C.D.解析求得函数的反函数为又函数与函数也互为反函数,所以故选C.3/3\n点评本题是以“年份”为背景的代数推理题,挖掘出是解题的关键,是推理的基础,结合累加法和反函数的有关知识可使问题圆满解决.此题对文科考生而言有相当的难度.3/3

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 14:37:05 页数:3
价格:¥3 大小:155.80 KB
文章作者:U-336598

推荐特供

MORE