【世纪金榜】2022届高考数学总复习 课时提升作业(六) 2.3函数的奇偶性与周期性 文 新人教A版
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
课时提升作业(六)函数的奇偶性与周期性一、选择题(每小题5分,共35分)1.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是( )A.4 B.3 C.2 D.1【解析】选C.由奇函数的概念可知y=x3,y=2sinx是奇函数.2.(2022·广州模拟)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A.y=B.y=e-xC.y=-x2+1D.y=lg|x|【解析】选C.A中,y=为奇函数,故排除A;B中,y=e-x为非奇非偶函数,故排除B;C中,y=-x2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减;D中,y=lg|x|为偶函数,在x∈(0,+∞)时单调递增,排除D.3.(2022·泉州模拟)设f(x)是周期为4的奇函数,当0≤x≤2时,f(x)=x(2-x),则f(2022)等于 ( )A.1B.-1C.3D.-3【解析】选B.f(2022)=f(4×503+3)=f(3)=f(4-1)=f(-1)=-f(1)=-1×(2-1)=-1.【方法技巧】周期性问题常与奇偶性相结合,解题时注意以下两点:(1)周期的确定:特别是给出递推关系要明确周期如何确定.(2)周期性与奇偶性在解题时,一般情况下周期性起到自变量值转换作用,奇偶性起到调节转化正负号的作用.【加固训练】(2022·皖北八校模拟)定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-2,0)时,f(x)=2x+,则f(2013)=( )A.-1B.0C.1D.±1【解析】选A.因为f(-x)=-f(x),所以函数f(x)为奇函数.因为f(x-2)=f(x+2),所以f(x+4)=f(x),即函数的周期为4.-7-\n所以f(2013)=f(4×503+1)=f(1).因为f(-1)=2-1+=1,f(-1)=-f(1)=1,即f(1)=-1,所以f(2013)=f(1)=-1,故选A.4.(2022·长春模拟)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R上为( )A.奇函数B.偶函数C.增函数D.周期函数【解析】选D.当n为整数时,必有[n+x]=n+[x]成立.设k∈Z,且k≠0,则f(x+k)=(x+k)-[x+k]=(x+k)-([x]+k)=x-[x]=f(x),所以f(x)必为周期函数,故选D.【一题多解】本题还可以采用如下方法:方法一:(特值法)取x1=1.2,x2=2,则f(x1)=1.2-[1.2]=0.2,f(-x1)=-1.2-[-1.2]=0.8,所以f(-x1)≠±f(x1),所以f(-x)≠±f(x),故A,B错;又f(x1)=0.2,f(x2)=0,显然f(x)不是增函数,故C错,故选D.方法二:(图象法)依据已知可以作出函数f(x)的图象,如图所示,则可知f(x)是有界,且周期为k(k∈Z,k≠0)的非单调函数,其最小正周期为1,故选D.5.若函数f(x)=是奇函数,则a的值为( )A.0B.1C.2D.4【解析】选A.由f(-1)=-f(1),得,所以(-1+a)2=(1+a)2,解得a=0.6.(2022·重庆模拟)已知函数y=f(x)是奇函数,当x>0时,f(x)=lgx,则f(f())的值等于( )A.B.-C.lg2D.-lg2【解析】选D.因为当x>0时,f(x)=lgx,所以f()=lg=-2,则f(f())=f(-2),-7-\n因为函数y=f(x)是奇函数,所以f(f())=-f(2)=-lg2.7.(2022·黄冈模拟)能够把圆O:x2+y2=16的周长和面积同时分为相等的两部分的函数称为圆O的“和谐函数”,下列函数不是圆O的“和谐函数”的是( )A.f(x)=4x3+xB.f(x)=lnC.f(x)=tanD.f(x)=ex+e-x【解析】选D.由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.A中,f(0)=0,且f(x)为奇函数,所以f(x)=4x3+x为“和谐函数”;B中,f(0)=ln=ln1=0,且f(-x)=ln=ln=-ln=-f(x),所以f(x)为奇函数,所以f(x)=ln为“和谐函数”;C中,f(0)=tan0=0,且f(-x)=tan(-)=-tan=-f(x),所以f(x)为奇函数,故f(x)=tan为“和谐函数”;D中,f(0)=e0+e-0=2,所以f(x)=ex+e-x的图象不过原点,所以f(x)=ex+e-x不是“和谐函数”.二、填空题(每小题5分,共15分)8.f(x)为奇函数,当x<0时,f(x)=log2(1-x),则f(3)= .【解析】f(3)=-f(-3)=-log24=-2.答案:-29.若函数f(x)=x2-|x+a|为偶函数,则实数a= .【解析】因为函数f(x)=x2-|x+a|为偶函数,所以f(-x)=f(x),即(-x)2-|-x+a|=x2-|x+a|,所以|-x+a|=|x+a|,所以a=0.答案:010.(2022·长沙模拟)设定义在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,若f(1-m)<f(m),则实数m的取值范围是 .【解析】因为f(x)是偶函数,所以f(-x)=f(x)=f(|x|).-7-\n所以不等式f(1-m)<f(m),等价于f(|1-m|)<f(|m|).又当x∈[0,2]时,f(x)是减函数.所以解得-1≤m<.答案:[-1,)(20分钟 40分)1.(5分)(2022·山东高考)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a-x),则称f(x)为准偶函数.下列函数中是准偶函数的是( )A.f(x)=B.f(x)=x2C.f(x)=tanxD.f(x)=cos(x+1)【解题提示】本题为新定义问题,准确理解准偶函数的概念再运算.【解析】选D.由f(x)=f(2a-x)可知,f(x)关于x=a对称,准偶函数即偶函数左右平移得到的.【加固训练】定义两种运算:a⊗b=,a⊕b=,则f(x)=是( )A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数【解析】选A.因为2⊗x=,x⊕2=,所以f(x)=该函数的定义域是[-2,0)∪(0,2],且满足f(-x)=-f(x).故函数f(x)是奇函数.2.(5分)(2022·杭州模拟)若偶函数y=f(x)(x∈R)满足f(x+2)=f(x),当x∈[0,1]时,f(x)=x,则y=f(x)的图象与y=log4|x|的图象的交点个数是( )A.3B.4C.6D.8【解析】选C.由于f(x)是满足f(x+2)=f(x)的偶函数,且当x∈[0,1]时,f(x)=x,故f(x)是周期为2的周期函数,其图象如图所示,根据函数y=log4|x|也是偶函数,其图象也关于y轴对称,容易知道它们的交点共有6个.故选C.-7-\n3.(5分)(2022·西安模拟)设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=对称,则f(1)+f(2)+f(3)+f(4)+f(5)= .【解析】f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=对称,所以f(-x)=-f(x),f(+x)=f(-x)⇒f(x)=f(1-x),所以f(-x)=f(1+x)=-f(x),f(2+x)=-f(1+x)=f(x),所以f(0)=f(1)=f(3)=f(5)=0,f(0)=f(2)=f(4)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)=0.答案:0【加固训练】已知函数f(x)满足:f(1)=,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2015)= .【解析】令x=1,y=0时,4f(1)·f(0)=f(1)+f(1),解得f(0)=,令x=1,y=1时,4f(1)·f(1)=f(2)+f(0),解得f(2)=-,令x=2,y=1时,4f(2)·f(1)=f(3)+f(1),解得f(3)=-,依次求得f(4)=-,f(5)=,f(6)=,f(7)=,f(8)=-,f(9)=-,…可知f(x)是以6为周期的函数,所以f(2015)=f(335×6+5)=f(5)=.答案:-7-\n【一题多解】本题还可以采用如下方法:因为f(1)=,4f(x)·f(y)=f(x+y)+f(x-y),所以构造符合题意的函数f(x)=所以f(2015)=答案:4.(12分)函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值.(2)判断f(x)的奇偶性并证明你的结论.(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.【解析】(1)因为对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),所以令x1=x2=1,得f(1)=2f(1),所以f(1)=0.(2)f(x)为偶函数.证明如下:令x1=x2=-1,有f(1)=f(-1)+f(-1),所以f(-1)=f(1)=0.令x1=-1,x2=x有f(-x)=f(-1)+f(x),所以f(-x)=f(x),所以f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,所以f(x-1)<2,等价于f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.所以0<|x-1|<16,解得-15<x<17且x≠1.所以x的取值范围是{x|-15<x<17且x≠1}.5.(13分)(能力挑战题)已知函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.(1)试判断函数y=f(x)的奇偶性.(2)试求方程f(x)=0在闭区间[-2014,2014]上根的个数,并证明你的结论.-7-\n【解析】(1)若y=f(x)为偶函数,则f(-x)=f(2-(x+2))=f(2+(x+2))=f(4+x)=f(x),所以f(7)=f(3)=0,这与f(x)在闭区间[0,7]上只有f(1)=f(3)=0矛盾;因此f(x)不是偶函数.若y=f(x)为奇函数,则f(0)=-f(0),所以f(0)=0,这与f(x)在闭区间[0,7]上只有f(1)=f(3)=0矛盾;因此f(x)不是奇函数.综上可知:函数f(x)既不是奇函数也不是偶函数.(2)由⇒⇒f(4-x)=f(14-x)⇒f(x)=f(x+10),从而知函数y=f(x)的周期T=10.由f(3)=f(1)=0,得f(11)=f(13)=f(-7)=f(-9)=0.故f(x)在[0,10]和[-10,0]上均有两个解,从而可知函数y=f(x)在[0,2014]上有404个解,在[-2014,0]上有402个解,所以函数y=f(x)在[-2014,2014]上共有806个解.-7-
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)