【世纪金榜】2022届高考数学总复习 课时提升作业(十二) 2.9函数模型及其应用 文 新人教A版
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
课时提升作业(十二)函数模型及其应用一、选择题(每小题5分,共25分)1.(2022·永州模拟)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是 ( )A.y=100x B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得,应选C.2.(2022·哈尔滨模拟)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品 ( )A.60件 B.80件 C.100件 D.120件【解析】选B.若每批生产x件产品,则每件产品的生产准备费用是,仓储费用是,总的费用是+≥2=20,当且仅当=时取等号,即x=80.故选B.3.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y=kax,若牛奶在0℃的冰箱中,保鲜时间约为100h,在5℃的冰箱中,保鲜时间约为80h,那么在10℃时保鲜时间约为( )A.49hB.56hC.64hD.72h【解析】选C.由得k=100,a5=,所以当10℃时,保鲜时间为100·a10=100·()2=64(h),故选C.4.(2022·-11-\n天津模拟)国家规定某行业征税如下:年收入在280万元及以下的税率为p%,超过280万元的部分按(p+2)%征税,有一公司的实际缴税比例为(p+0.25)%,则该公司的年收入是( )A.560万元B.420万元C.350万元D.320万元【解题提示】设年收入为x,构建分段函数模型求解.【解析】选D.设该公司的年收入为x,纳税额为y,则由题意,得y=依题意有,=(p+0.25)%,解之得x=320(万元).【加固训练】(2022·张家界模拟)由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低,现在价格为8100元的计算机经过15年价格应降为( )A.2000元B.2400元C.2800元D.3000元【解析】选B.设经过3个5年,产品价格为y元,则y=8100×(1-)3=2400.5.图形M(如图所示)是由底为1,高为1的等腰三角形及高为2和3的两个矩形所构成,函数S=S(a)(a≥0)是图形M介于平行线y=0及y=a之间的那一部分面积,则函数S(a)的图象大致是( )-11-\n【解析】选C.依题意,当0≤a≤1时,当1<a≤2时,S(a)=+2a;当2<a≤3时,S(a)=+2+a=a+;当a>3时,S(a)=+2+3=,于是S(a)=由解析式可知选C.【一题多解】本题还可以采用如下方法选C.直线y=a在[0,1]上平移时S(a)的变化量越来越小,故可排除选项A,B.而直线y=a在[1,2]上平移时S(a)的变化量比在[2,3]上的变化量大,故可排除选项D.二、填空题(每小题5分,共15分)6.(2022·漳州模拟)有一批材料可以建成200m长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形(如图所示),则围成场地的最大面积为 (围墙厚度不计).【解题提示】根据题目中条件,建立二次函数模型,采用配方法求最高值即可.【解析】设矩形场地的宽度为xm,则矩形场地的长为(200-4x)m,面积S=x(200-4x)=-4(x-25)2+2500.故当x=25时,S取得最大值2500,即围成场地的最大面积为2500m2.-11-\n答案:2500m27.某单位“五一”期间组团包机去上海旅游,其中旅行社的包机费为30000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团中的人数在30或30以下,飞机票每张收费1800元.若旅游团的人数多于30人,则给以优惠,每多1人,机票费每张减少20元,但旅游团的人数最多有75人,那么旅游团的人数为 人时,旅行社获得的利润最大.【解析】设旅游团的人数为x人,飞机票为y元,利润为Q元,依题意,①当1≤x≤30时,y=1800元,此时利润Q=yx-30000=1800x-30000,此时最大值是当x=30时,Qmax=1800×30-30000=24000(元);②当30<x≤75时,y=1800-20(x-30)=-20x+2400,此时利润Q=yx-30000=-20x2+2400x-30000=-20(x-60)2+42000,所以当x=60时,旅行社可获得的最大利润42000元.综上,当旅游团的人数为60人时,旅行社获得的利润最大.答案:608.(2022·潍坊模拟)某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.Q=at+b,Q=at2+bc+c,Q=a·bt,Q=a·logbt利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是 .(2)最低种植成本是 (元/100kg).【解析】根据表中数据可知函数不单调,所以Q=at2+bt+c且开口向上,对称轴代入数据得-11-\n所以西红柿种植成本最低时的上市天数是120.最低种植成本是14400a+120b+c=14400×0.01+120×(-2.4)+224=80.答案:(1)120 (2)80三、解答题(每小题10分,共20分)9.某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p与听课时间t之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分,当t∈[14,40]时,曲线是函数y=loga(t-5)+83(a>0且a≠1)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.(1)试求p=f(t)的函数关系式.(2)老师在什么时段内安排核心内容能使得学生听课效果最佳?请说明理由.【解析】(1)t∈(0,14]时,设p=f(t)=c(t-12)2+82(c<0),将(14,81)代入得c=-,t∈(0,14]时,p=f(t)=-(t-12)2+82;t∈[14,40]时,将(14,81)代入y=loga(t-5)+83,得a=,所以p=f(t)=(2)t∈(0,14]时,由-(t-12)2+82≥80,解得12-2≤t≤12+2,所以t∈[12-2,14],t∈(14,40]时,由log(t-5)+83≥80,解得5<t≤32,所以t∈(14,32],所以t∈[12-2,32],即老师在t∈[12-2,32]时段内安排核心内容能使得学生听课效果最佳.10.(2022·-11-\n太原模拟)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15-0.1x万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,单套丛书的利润最大?【解析】(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+=32(元),书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x元时,由解得0<x<150.依题意,单套丛书利润P=x-(30+)=x--30,所以P=-[(150-x)+]+120.因为0<x<150,所以150-x>0,由(150-x)+≥2=2×10=20,当且仅当150-x=,即x=140时等号成立,此时,Pmax=-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.【加固训练】围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m.设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).(1)将y表示为x的函数.(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.【解析】(1)设矩形的另一边长为am,则y=45x+180(x-2)+180×2a=225x+360a-360,由已知xa=360,得a=,所以y=-360(x>2).(2)因为x>2,所以225x+=10800,-11-\n所以y=225x+-360≥10440.当且仅当225x=时,等号成立.即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.(20分钟 40分)1.(5分)已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积为定值1010,为了简单起见,科学家用PA=lg(nA)来记录A菌个数的资料,其中nA为A菌的个数,则下列判断中正确的个数为( )①PA≥1;②若今天的PA值比昨天的PA值增加1,则今天的A菌个数比昨天的A菌个数多了10个;③假设科学家将B菌个数控制为5万个,则此时5<PA<5.5.A.0 B.1 C.2 D.3【解析】选B.当nA=1时PA=0,故①错误;若PA=1,则nA=10,若PA=2,则nA=100,故②错误;设B菌的个数为nB=5×104,所以nA==2×105,所以PA=lg(nA)=lg2+5.又因为lg2≈0.3,所以5<PA<5.5,故③正确.2.(5分)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9平方米,且高度不低于米.记防洪堤横断面的腰长为x米,外周长(梯形的上底线段BC与两腰长的和)为y米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x的范围为( )A.[2,4] B.[3,4] C.[2,5] D.[3,5]【解析】选B.根据题意知,9=(AD+BC)h,其中AD=BC+2×=BC+x,h=x,所以9=(2BC+x)·x,得BC=-,由得2≤x<6.所以y=BC+2x=+(2≤x<6),由y=+≤10.5解得3≤x≤4.因为[3,4]⊆-11-\n[2,6),所以腰长x的范围是[3,4].故选B.3.(5分)(2022·湖南高考)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为( )A.B.C.D.-1【解析】选D.设该市这两年生产总值的年平均增长率为x,则由已知,列得(1+x)2=(1+p)(1+q),解得x=-1.4.(12分)(2022·长春模拟)某产品原来的成本为1000元/件,售价为1200元/件,年销售量为1万件,由于市场和顾客要求提高,公司计划投入资金进行产品升级,据市场调查,若投入x万元,每件产品的成本将降低x,在售价不变的情况下,年销售量将减少万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润为f(x)(单位:万元).(1)求f(x)的函数解析式.(2)求f(x)的最大值,以及f(x)取得最大值时x的值.【解题提示】(1)求出升级后每件的成本、利润及年销售量,则利润的函数解析式可求.(2)利用基本不等式求出f(x)的最大值.【解析】(1)依题意,产品升级后,每件的成本为1000-元,利润为200+元,年销售量为1-万件,纯利润为f(x)==198.5-.(2)f(x)=198.5-≤198.5-2×=178.5.等号当且仅当,即x=40时成立.所以f(x)取最大值时的x的值为40.【加固训练】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米.(1)要使矩形AMPN的面积大于32平方米,则AN的长度应在什么范围内?-11-\n(2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小值.【解析】设AN的长为x(x>2)米,由得|AM|=,所以S矩形AMPN=|AN|·|AM|=.(1)由S矩形AMPN>32,得>32,又x>2,于是3x2-32x+64>0,解得2<x<或x>8,即AN长的取值范围为(2,)∪(8,+∞).(2)S矩形AMPN===24,当且仅当3(x-2)=,即x=4时,y=取得最小值24.所以当AN=4米时,矩形AMPN的面积最小,最小为24平方米.5.(13分)(能力挑战题)省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=,x∈[0,24],其中a是与气象有关的参数,且a∈[0,1],若用每天f(x)的最大值作为当天的综合放射性污染指数,并记作M(a).(1)令t=,x∈[0,24],求t的取值范围.(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?【解析】(1)当x=0时,t=0;当0<x≤24时,≤1(当x=1时取等号),所以0<t≤1,-11-\n综上,t的取值范围是[0,1].(2)当a∈[0,1]时,记g(t)=|t-a|+2a+,则g(t)=因为g(t)在[0,a]上单调递减,在(a,1]上单调递增,且g(0)=3a+,g(1)=a+,g(0)-g(1)=2(a-).故M(a)=即M(a)=所以当且仅当0≤a≤时,M(a)≤2.故当0≤a≤时不超标,当<a≤1时超标.【加固训练】某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设f(n)表示前n年的纯利润总和(f(n)=前n年的总收入-前n年的总支出-投资额).(1)该厂从第几年开始盈利?(2)若干年后,投资商为开发新项目,对该厂有两种处理方法:①年平均纯利润达到最大时,以48万元出售该厂,②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?【解析】(1)由题意,第一年共支出12万元,以后每年支出增加4万元,可知每年的支出构成一个等差数列,用g(n)表示前n年的总支出,所以g(n)=12n+×4=2n2+10n(n∈N*),-11-\n因为f(n)=前n年的总收入-前n年的总支出-投资额,所以f(n)=50n-(2n2+10n)-72=-2n2+40n-72.由f(n)>0,即-2n2+40n-72>0,解得2<n<18.由n∈N*知,从第三年开始盈利.(2)方案①:年平均纯利润为=40-2(n+)≤16,当且仅当n=6时等号成立.故方案①共获利6×16+48=144(万元),此时n=6.方案②:f(n)=-2(n-10)2+128.当n=10时,f(n)max=128.故方案②共获利128+16=144(万元).比较两种方案,获利都是144万元,但由于方案①只需6年,而方案②需10年,故选择方案①更合算.-11-
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)