首页

【步步高】2022高考物理大一轮复习 8.2 磁场对运动电荷的作用

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

8.2 磁场对运动电荷的作用1.带电荷量为+q的粒子在匀强磁场中运动,下列说法中正确的是(  ).A.只要速度大小相同,所受洛伦兹力就相同B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小、方向均不变C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直D.粒子在只受到洛伦兹力作用下运动的动能、速度均不变解析 因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度的方向有关,如当粒子速度与磁场垂直时F=qvB,当粒子速度与磁场平行时F=0.又由于洛伦兹力的方向永远与粒子的速度方向垂直,因而速度方向不同时,洛伦兹力的方向也不同,所以A选项错.因为+q改为-q且速度反向,由左手定则可知洛伦兹力方向不变,再由f=qvB知大小不变,所以B项正确.因为电荷进入磁场时的速度方向可以与磁场方向成任意夹角,所以C选项错.因为洛伦兹力总与速度方向垂直,因此洛伦兹力不做功,粒子动能不变,但洛伦兹力可改变粒子的运动方向,使粒子速度的方向不断改变,所以D项错.答案 B2.初速为v0的电子,沿平行于通电长直导线的方向射出,直导线中电流方向与电子的初始运动方向如图8-2-1所示,则(  ).A.电子将向右偏转,速率不变B.电子将向左偏转,速率改变图8-2-1C.电子将向左偏转,速率不变D.电子将向右偏转,速率改变解析 由安培定则可知,通电导线右方磁场方向垂直纸面向里,则电子受洛伦兹力方向由左手定则可判知向右,所以电子向右偏;由于洛伦兹力不做功,所以电子速率不变.答案 A图8-2-23.如图8-2-2所示,一个带负电的物体从绝缘粗糙斜面顶端滑到底端时的速度为v,若加上一个垂直纸面向外的磁场,则滑到底端时(  ).A.v变大B.v变小C.v不变D.不能确定v的变化7\n解析 物体受到的洛伦兹力方向垂直斜面向下,物体受到的摩擦力变大,到达底端时克服摩擦力做功增加,动能减少,速度变小,B正确.答案 B4.垂直纸面的匀强磁场区域里,一离子从原点O沿纸面向x轴正方向飞出,其运动轨迹可能是下图中的(  ).解析 题中既没给出离子所带电性,又没给出匀强磁场的具体方向,因此可能有多个解.假设磁场方向垂直纸面向外,当离子带正电时,由左手定则可以判断离子刚飞入时所受洛伦兹力方向沿y轴负方向,离子运动轨迹是B;同理可以判断当离子带负电时,运动轨迹是C,无论哪种情况,离子的运动轨迹都是和x轴相切的,A、D错误.答案 BC图8-2-35.两个带电粒子以同一速度、同一位置进入匀强磁场,在磁场中它们的运动轨迹如图8-2-20所示.粒子a的运动轨迹半径为r1,粒子b的运动轨迹半径为r2,且r2=2r1,q1、q2分别是粒子a、b所带的电荷量,则(  ).A.a带负电、b带正电,比荷之比为∶=2∶1B.a带负电、b带正电,比荷之比为∶=1∶2C.a带正电、b带负电,比荷之比为∶=2∶1D.a带正电、b带负电,比荷之比为∶=1∶1解析 根据磁场方向及两粒子在磁场中的偏转方向可判断出a、b分别带正、负电,根据半径之比可计算出比荷之比为2∶1.(单直线边界模型)答案 C图8-2-46.如图8-2-4所示,一半径为R的圆形区域内有垂直于纸面向里的匀强磁场,一质量为m,电量为q的正电荷(重力忽略不计)以速度v沿正对着圆心O的方向射入磁场,从磁场中射出时速度方向改变了θ角.磁场的磁感应强度大小为7\n(  ).A.B.C.D.解析 本题考查带电粒子在磁场中的运动.根据画轨迹、找圆心、定半径思路分析.注意两点,一是找圆心的两种方法:(1)根据初末速度方向垂线的交点.(2)根据已知速度方向的垂线和弦的垂直平分线交点.二是根据洛伦兹力提供向心力和三角形边角关系,确定半径qvB=,r=Rcot,B=.B选项正确(圆边界模型).答案 B图8-2-57.如图8-2-5所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a、b、c以不同的速率对准圆心O沿着AO方向射入磁场,其运动轨迹如图,若带电粒子只受磁场力的作用,则下列说法正确的是(  ).A.a粒子速率最大B.c粒子速率最大C.c粒子在磁场中运动时间最长D.它们做圆周运动的周期Ta<Tb<Tc解析 做出三个粒子运动的圆心和半径,如图所示,半径最大的是c粒子,最小的是a粒子,圆心角最大的是a粒子,最小的是c粒子,所以速率最大的是c粒子,最小的是a粒子;因为三个粒子的电荷量与质量都相同,所以运动的周期是相同的,在磁场中运动时间最长的是a粒子,最短的是c粒子.答案 B8.如图8-2-6所示,匀强磁场的边界为平行四边形ABDC,其中AC边与对角线BC垂直,一束电子以大小不同的速度沿BC从B7\n点射入磁场,不计电子的重力和电子之间的相互作用,关于电子在磁场中运动的情况,下列说法中正确的是(  ).图8-2-6A.入射速度越大的电子,其运动时间越长B.入射速度越大的电子,其运动轨迹越长C.从AB边出射的电子的运动时间都相等D.从AC边出射的电子的运动时间都相等解析 电子以不同的速度沿BC从B点射入磁场,若电子从AB边射出,画出其运动轨迹由几何关系可知在AB边射出的粒子轨迹所对的圆心角相等,在磁场中的运动时间相等,与速度无关,C对,A错;从AC边射出的电子轨迹所对圆心角不相等,且入射速度越大,其运动轨迹越短,在磁场中的运动时间不相等,B、D错(双直线界模型).答案 C9.如图8-2-7是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是(  ).A.质谱仪是分析同位素的重要工具图8-2-7B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于D.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小解析 本题考查质谱仪的工作原理,意在考查考生分析带电粒子在电场、磁场中的受力和运动的能力.粒子先在电场中加速,进入速度选择器做匀速直线运动,最后进入磁场做匀速圆周运动.在速度选择器中受力平衡:qE=qvB得v=,方向由左手定则可知磁场方向垂直纸面向外,B、C选项正确.进入磁场后,洛伦兹力提供向心力,由qvB0=得,R=,所以比荷不同的粒子偏转半径不一样,所以,A项正确、D项错.答案 ABC10.如图8-2-8所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点P垂直磁场射入大量的带正电,电荷量为q,质量为m,速度为v的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是(  ).7\n图8-2-8A.只要对着圆心入射,出射后均可垂直打在MN上B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D.只要速度满足v=,沿不同方向入射的粒子出射后均可垂直打在MN上解析 当v⊥B时,粒子所受洛伦兹力充当向心力,做半径和周期分别为R=、T=的匀速圆周运动;只要速度满足v=,沿不同方向入射的粒子出射后均可垂直打在MN上,选项D正确.答案 D图8-2-911.如图8-2-9所示,直角三角形OAC(α=30°)区域内有B=0.5T的匀强磁场,方向如图所示.两平行极板M,N接在电压为U的直流电源上,左板为高电势.一带正电的粒子从靠近M板由静止开始加速,从N板的小孔射出电场后,垂直OA的方向从P点进入磁场中.带电粒子的比荷为=105C/kg,OP间距离为L=0.3m.全过程不计粒子所受的重力,则:(1)若加速电压U=120V,通过计算说明粒子从三角形OAC的哪一边离开磁场?(2)求粒子分别从OA、OC边离开磁场时粒子在磁场中运动的时间.解析 (1)如图所示,当带电粒子的轨迹与OC边相切时为临界状态,设临界半径为R,加速电压U0,则有:R+=L,解得R=0.1m,qU0=mv2,qvB=m,U0=125V,U<U0,则r<R,粒子从OA边射出.(2)带电粒子在磁场做圆周运动的周期为T==4π×10-5s当粒子从OA边射出时,粒子在磁场中恰好运动了半个周期t1==2π×10-5s当粒子从OC边射出时,粒子在磁场中运动的时间小于周期,即t2≤=×10-5s.7\n答案 (1)OA边 (2)2π×10-5s 小于等于×10-5s图8-2-1012.受控热核聚变要把高度纯净的氘、氚混合材料加热到1亿度以上,即达到所谓热核温度.在这样的超高温度下,氘、氚混合气体已完全电离,成为氘、氚原子核和自由电子混合而成的等离子体.从常温下处于分子状态的氘、氚材料开始,一直到上述热核温度的整个加热过程中,必须把这个尺寸有限的等离子体约束起来,使组成等离子体的原子核在发生足够多的聚变反应之前不至于失散,可一般的容器无法使用,因为任何材料的容器壁都不可能承受这样的高温.而磁约束是目前的重点研究方案,利用磁场可以约束带电粒子这一特性,构造一个特殊的磁容器建成聚变反应堆.图8-2-10所示是一种简化示意图,有一个环形匀强磁场区域的截面内半径R1=m,外半径R2=3m,磁感应强度B=0.5T,被约束的粒子的比荷=4.0×107C/kg,不计粒子重力和粒子间相互作用.(1)若带电粒子从中间区域沿半径方向射入磁场,则粒子不能穿越磁场外边界的最大速率vm是多少?(2)若带电粒子以(1)问中最大速率vm从圆心O出发沿圆环半径方向射入磁场,请在图中画出其运动轨迹,并求出粒子从出发到第一次回到出发点所用的时间.解析 (1)设粒子运动的最大半径为r,由牛顿第二定律有:m=qvmB如图所示,R12+r2=(R2-r)2解得:r=1.0m,vm=2×107m/s.(2)粒子的运动轨迹如下答案图所示,由几何关系可知:θ=30°由对称性可知,粒子进入磁场转过240°又回到中空区域,由几何知识可判断粒子的运动轨迹如答案图所示.粒子在磁场中转过240°所用时间为:t1==2.09×10-7s粒子在中空区域运动的时间为:t2==1.73×10-7s粒子从出发到第一次回到出发点所用时间为:T0=t1+t2=3.82×10-7s.7\n答案 (1)2×107m/s(2)运动轨迹如图所示 3.82×10-7s7

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 15:30:40 页数:7
价格:¥3 大小:195.26 KB
文章作者:U-336598

推荐特供

MORE