首页

福建专版2022高考数学一轮复习课时规范练33合情推理与演绎推理文

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

课时规范练33 合情推理与演绎推理基础巩固组1.下面几种推理是合情推理的是(  )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出n边形的内角和是(n-2)·180°.             A.①②B.①③C.①②④D.②④〚导学号24190759〛2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是(  )A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误3.(2022湖北武昌1月调研,文9)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是(  )A.甲B.乙C.丙D.丁4.①已知a是三角形一边的长,h是该边上的高,则三角形的面积是12ah,如果把扇形的弧长l,半径r分别看成三角形的底边长和高,可得到扇形的面积为12lr;②由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n-1=n2,则①②两个推理过程分别属于(  )A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理5.(2022河北石家庄质检)某市为了缓解交通压力实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A,B,C,D,E五辆车,保证每天至少有四辆车可以上路行驶.已知E车周四限行,B车昨天限行,从今天算起,A,C两车连续四天都能上路行驶,E车明天可以上路,由此可知下列推测一定正确的是(  )A.今天是周六B.今天是周四C.A车周三限行D.C车周五限行〚导学号24190760〛5\n6.从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为(  )A.2011B.2012C.2013D.20147.下列推理是归纳推理的是(  )A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=a,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇8.(2022东北三省名校模拟)在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀.当他们被问到谁得到了优秀时,丙说:“甲没有得优秀”;乙说:“我得了优秀”;甲说:“丙说的是真话”.事实证明:在这三名同学中,只有一人说的是假话,那么得优秀的同学是     . 9.有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是     . 10.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n个图形中小正方形的个数是     . 11.我国南北朝时的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,图①是一个形状不规则的封闭图形,图②是一个上底为1的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图①和图②所截得的两线段长始终相等,则图①的面积为     .〚导学号24190761〛 12.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得100的所有正约数之和为     . 综合提升组5\n13.来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起,他们除懂本国语言外,每人还会说其他三国语言中的一种,有一种语言是三人都会说的,但没有一种语言人人都懂,现知道:①甲是日本人,丁不会说日语,但他俩都能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③甲、乙、丙、丁交谈时,找不到共同语言沟通;④乙不会说英语,当甲与丙交谈时,他都能做翻译.针对他们懂的语言,正确的推理是(  )A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英〚导学号24190762〛14.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1,x2,x3,x4,大圆盘上所写的实数分别记为y1,y2,y3,y4,如图所示.将小圆盘逆时针旋转i(i=1,2,3,4)次,每次转动90°,记Ti(i=1,2,3,4)为转动i次后各区域内两数乘积之和,例如T1=x1y2+x2y3+x3y4+x4y1.若x1+x2+x3+x4<0,y1+y2+y3+y4<0,则以下结论正确的是(  )A.T1,T2,T3,T4中至少有一个为正数B.T1,T2,T3,T4中至少有一个为负数C.T1,T2,T3,T4中至多有一个为正数D.T1,T2,T3,T4中至多有一个为负数15.类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正确的运算公式是(  )①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A.①②B.③④C.①④D.②③16.如图所示,将正整数从小到大沿三角形的边成螺旋状排列起来,2在第一个拐弯处,4在第二个拐弯处,7在第三个拐弯处,……,则在第二十个拐弯处的正整数是     . 5\n〚导学号24190763〛创新应用组17.对于大于1的自然数m的三次方幂可用奇数进行以下方式的“分裂”:23=3+5,33=7+9+11,43=13+15+17+19,……仿此,若m3的“分裂数”中有一个是31,则m的值为     . 18.(2022河北邯郸一模,文15)已知三个命题p,q,m中只有一个是真命题,课堂上老师给出了三个判断:A:p是真命题;B:p∨q是假命题;C:m是真命题.老师告诉学生三个判断中只有一个是错误的,则三个命题p,q,m中的真命题是     .〚导学号24190764〛 答案:1.C ①是类比推理,②④是归纳推理,③是非合情推理.2.C 因为大前提的形式:“有些有理数是无限循环小数”,不是全称命题,所以不符合三段论的推理方式,所以推理形式错误,故选C.3.B 由题意乙、丁两人的观点是一致的,因此乙、丁两人的供词应该是同真或同假;假设乙、丁两人说的是真话,则丙是罪犯,这与甲说假话,推出乙、丙、丁三人不是罪犯矛盾,所以乙、丁两人说的是假话,而由甲、丙两人说的是真话可以断定乙是罪犯.故选B.4.A ①由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;②由特殊到一般,此种推理为归纳推理,故选A.5.B 因为每天至少有四辆车可以上路行驶,E车明天可以上路,E车周四限行,所以今天不是周三;因为B车昨天限行,所以今天不是周一,也不是周日;因为A,C两车连续四天都能上路行驶,所以今天不是周五,周二和周六,所以今天是周四,故选B.6.B 根据题干图所示的规则排列,设第一层的一个数为a,则第二层的三个数为a+7,a+8,a+9,第三层的五个数为a+14,a+15,a+16,a+17,a+18,这9个数之和为a+3a+24+5a+80=9a+104.由9a+104=2012,得a=212,是自然数.故选B.7.B 从S1,S2,S3猜想出数列的前n项和Sn,是从特殊到一般的推理,所以B是归纳推理,故选B.8.丙 分析题意只有一人说假话可知,甲与丙必定说的都是真话,故说假话的只有乙,即乙没有得优秀,甲也没有得优秀,得优秀的是丙.9.1和3 由丙说的话可知,丙的卡片上的数字可能是“1和2”或“1和3”.若丙的卡片上的数字是“1和2”,则由乙说的话可知,乙的卡片上的数字是“2和3”,甲的卡片上的数字是“1和3”,此时与甲说的话一致;若丙的卡片上的数字是“1和3”,则由乙说的话可知,乙的卡片上的数字是“2和3”,甲的卡片上的数字是“1和2”,此时与甲说的话矛盾.综上可知,甲的卡片上的数字是“1和3”.10.n(n+1)2 由题图知第n个图形的小正方形个数为1+2+3+…+n=n(n+1)2.11.92 类比祖暅原理可得两个图形的面积相等,梯形面积为S=12(1+2)×3=92,所以图①的面积为92.12.217 类比36的所有正约数之和的方法,有:100的所有正约数之和可按如下方法得到:因为100=22×52,5\n所以100的所有正约数之和为(1+2+22)(1+5+52)=217.可求得100的所有正约数之和为217.13.A 由条件①知丁会说日语,故B错误;由条件②知会说日语和法语的不能是同一人,故D错误;由条件③知四人不能有共同懂的语言,故C错误;只有A符合题意,故选A.14.A 根据题意可知:(x1+x2+x3+x4)·(y1+y2+y3+y4)>0,又(x1+x2+x3+x4)(y1+y2+y3+y4)去掉括号即得:(x1+x2+x3+x4)(y1+y2+y3+y4)=T1+T2+T3+T4>0,所以可知T1,T2,T3,T4中至少有一个为正数,故选A.15.B 经验证易知①②错误.依题意,注意到2S(x+y)=2(ax+y-a-x-y),S(x)C(y)+C(x)S(y)=2(ax+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).16.211 观察题图可知,第一个拐弯处2=1+1,第二个拐弯处4=1+1+2,第三个拐弯处7=1+1+2+3,第四个拐弯处11=1+1+2+3+4,第五个拐弯处16=1+1+2+3+4+5,发现规律:拐弯处的数是从1开始的一串连续正整数相加之和再加1,在第几个拐弯处,就加到第几个正整数,所以第二十个拐弯处的正整数就是1+1+2+3+…+20=211.17.6 ∵23=3+5,是从3开始的2个奇数的和;33=7+9+11,是从5的下一个奇数7开始的3个奇数的和;……而31之前(包括31)除了1以外的奇数有15个,又2+3+4+5=14,∴63=31+33+35+37+39+41.故m的值应为6.18.m ①若A是错误的,则p是假命题,q是假命题,m是真命题,满足条件;②若B是错误的,则p与q至少有一个是真命题;又m是真命题.不满足条件;③若C是错误的,则p是真命题,p∨q不可能是假命题,不满足条件.故真命题是m.5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 16:46:03 页数:5
价格:¥3 大小:110.80 KB
文章作者:U-336598

推荐特供

MORE