首页

高考数学二轮专题突破训练第1部分6套)doc高中数学

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/48

2/48

剩余46页未读,查看更多内容需下载

2022届高考数学二轮专题突破训练(第1局部6套)2022届高考数学二轮专题突破训练——概率与统计一、选择题:本大题共12小题,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1、从某项综合能力测试中抽取100人的成绩,统计如表,那么这100人成绩的标准差为()分数54321人数2010303010A.B.C.3D.w.w.w.k.s.5.u.c.o.2从20名男同学,10名女同学中任选3名参加体能测试,那么选到的3名同学中既有男同学又有女同学的概率为()A.B.C.D.3、已知随机变量服从正态分布N(3,a2),那么A.B.C.D.4、某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是48/48\nA.B.C.D.5、某班级要从4名男生、2名女生中选派4人参加某次社区效劳,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.486、某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,那么应在三年级抽取的学生人数为(C)A.24B.18C.16D.12一年级二年级三年级女生373男生3773707、4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,那么取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.8、明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,那么两个闹钟至少有一准时响的概率是()A.0.9B.0.95C.0.98D.0.979、电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,那么一天中任一时刻显示的四个数字之和为23的概率为48/48\nA.B.C.D.10、两位大学毕业生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是”,根据这位负责人的话可以推断出参加面试的人数为()A.21     B.35    C.42   D.70611、一组数据的平均数是,方差是,假设将这组数据中的每一个数据都加上,得到一组新数据,那么所得新数据的平均数和方差分别是( )A.B.C.D.12、已知,,假设,那么△ABC是直角三角形的概率是()A.B.C.D.二.填空题:本大题共6个小题。把答案填在题中横线上。13、在平面直角坐标系中,从六个点:中任取三个,这三点能构成三角形的概率是_________________(结果用分数表示)14、为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为,,,,48/48\n,由此得到频率分布直方图如图3,那么这20名工人中一天生产该产品数量在的人数是。15、已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.假设要使该总体的方差最小,那么a、b的取值分别是__________________16、某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,那么每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答).17、一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的安康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.18、从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:由以上数据设计了如下茎叶图:甲乙312775502845422925873313046794031235568885533202247974133136734348/48\n2356根据以上茎叶图,对甲乙两品种棉花的纤维长度作比较,写出两个统计结论:①__________________________________________________________________________②__________________________________________________________________________三.解答题:本大题共9个小题,解容许写出文字说明,证明过程或演算步骤。19、现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求被选中的概率;(Ⅱ)求和不全被选中的概率.20、为防止风沙危害,某地决定建立防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。(Ⅰ)求n,p的值并写出的分布列;(Ⅱ)假设有3株或3株以上的沙柳未成活,那么需要补种,求需要补种沙柳的概率21、甲、乙等五名奥运志愿者被随机地分到四个不同的岗位效劳,每个岗位至少有一名志愿者.48/48\n(Ⅰ)求甲、乙两人同时参加岗位效劳的概率;(Ⅱ)求甲、乙两人不在同一个岗位效劳的概率;(Ⅲ)设随机变量为这五名志愿者中参加岗位效劳的人数,求的分布列.22、随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,那么三等品率最多是多少?23、甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约。乙、丙那么约定:两人面试都合格就一同签约,否那么两人都不签约。设每人面试合格的概率都是,且面试是否合格互不影响。求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.48/48\n24、某射击测试规那么为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.(Ⅰ)求该射手恰好射击两次的概率;(Ⅱ)该射手的得分记为,求随机变量的分布列及数学期望.25、设进入某商场的每一位顾客购置甲种商品的概率位0.5,购置乙种商品的概率为0.6,且购置甲种商品与乙种商品相互独立,各顾客之间购置商品是相互独立的.(Ⅰ)求进入该商场的1位顾客购置甲、乙两种商品中的一种的概率(Ⅱ)求进入该商场的3位顾客中,至少有2位顾客既未购置甲种也未购置乙种商品的概率26、甲、乙两个篮球运发动互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.(Ⅰ)求乙投球的命中率;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)假设甲、乙两人各投球2次,求两人共命中2次的概率.27、一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是;从中任意摸出2个球,至少得到1个白球的概率是.求:(Ⅰ)从中任意摸出2个球,得到的都是黑球的概率;(Ⅱ)袋中白球的个数。答案:一、选择题1、B2、D3、D4、B5、A6、C7、C8、C9、C10、A11、D12、C二、填空题48/48\n13、14、1315、10.5和10.516、21617、1018、(1).乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2).甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).(3).甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm.(4).乙品种棉花的纤维长度根本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.三、解答题19解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的根本领件空间{,,,,,,,,}48/48\n由18个根本领件组成.由于每一个根本领件被抽取的时机均等,因此这些根本领件的发生是等可能的.用表示“恰被选中”这一事件,那么{,}事件由6个根本领件组成,因而.(Ⅱ)用表示“不全被选中”这一事件,那么其对立事件表示“全被选中”这一事件,由于{},事件有3个根本领件组成,所以,由对立事件的概率公式得.20(1)由得,从而的分布列为0123456(2)记”需要补种沙柳”为事件A,那么得或21解:(Ⅰ)记甲、乙两人同时参加岗位效劳为事件,那么,即甲、乙两人同时参加岗位效劳的概率是.48/48\n(Ⅱ)记甲、乙两人同时参加同一岗位效劳为事件,那么,所以,甲、乙两人不在同一岗位效劳的概率是.(Ⅲ)随机变量可能取的值为1,2.事件“”是指有两人同时参加岗位效劳,那么.所以,的分布列是1322解:(1)的所有可能取值有6,2,1,-2;,,故的分布列为:621-20.630.250.10.02(2)(3)设技术革新后的三等品率为,那么此时1件产品的平均利润为依题意,,即,解得所以三等品率最多为48/48\n23解用A,B,C分别表示事件甲、乙、丙面试合格。由题意知A,B,C相互独立,且P(A)=P(B)=P(C)=.(Ⅰ)至少有1人面试合格的概率是(Ⅱ)的可能取值为0,1,2,3.====所以,的分布列是0123P的期望48/48\n24(Ⅰ)设该射手第次击中目标的事件为,那么,.(Ⅱ)可能取的值为0,1,2,3.的分布列为01230.0080.0320.160.8.25解:(Ⅰ)记A表示事件:进入该商场的1位顾客选购甲种商品;B表示事件:进入该商场的1位顾客选购乙种商品;C表示事件:进入该商场1位顾选购甲、乙两种商品中的一种。那么C=(A·)+(·B)P(C)=P(A·+·B)=P(A·)+P(·B)=P(A)·P()+P()·P(B)=0.5×0.4+0.5×0.6=0.5(Ⅱ)记A2表示事件:进入该商场的3位顾客中恰有2位顾客既未选购甲种商品,也未选购乙种商品;A3表示事件:进入该商场的3位顾客中都未选购甲种商品,也未选购乙种商品;D表示事件:进入该商场的1位顾客未选购甲种商品,也未选购乙种商品;E表示事件:进入该商场的3位顾客中至少有2位顾客既未选购甲种商品,也未选购乙种商品。那么D=·P(D)=P(·)=P()·P()=0.5×0.4=0.2P(A2)=×0.22×0.8=0.096P(A3)=0.23=0.008P(E)=P(A2+A3)=P(A2)+P(A3)=0.096+0.008=0.10448/48\n26(Ⅰ)解法一:设“甲投球一次命中”为事件,“乙投球一次命中”为事件,由题意得,解得或(舍去),所以乙投球的命中率为.解法二:设“甲投球一次命中”为事件,“乙投球一次命中”为事件,由题意得,于是或(舍去),故.所以乙投球的命中率为.(Ⅱ)解法一:由题设和(Ⅰ)知,,.故甲投球2次至少命中1次的概率为.解法二:由题设和(Ⅰ)知,,.故甲投球2次至少命中1次的概率为.(Ⅲ)解:由题设和(Ⅰ)知,,,,.甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中2次,乙2次均不中;甲2次均不中,乙中2次.概率分别为,,.所以甲、乙两人各投球2次,共命中2次的概率为.27(Ⅰ)解:由题意知,袋中黑球的个数为记“从袋中任意摸出两个球,得到的都是黑球”为事件A,那么48/48\n(Ⅱ)解:记“从袋中任意摸出两个球,至少得到一个白球”为事件B。设袋中白球的个数为x,那么得到x=52022届高考数学二轮专题突破训练——排列组合一、选择题:本大题共16小题,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1、某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3人参加某项“好运北京”测试赛的翻译工作,假设要求这3人中既有男生,又有女生,那么不同的选法共有()w.w.w.k.s.5.u.c.o.A.45种B.56种C.90种D.120种2、假设二项式展开式中含有常数项,那么的最小取值是()A5    B6     C7      D83、在展开式中,含的负整数指数幂的项共有()A.8项B.6项C.4项D.2项4、某电视台连续播放5个不同的广告,其中有3个不同的商业广告和248/48\n个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,那么不同的播放方式有()A.120种B.48种C.36种D.18种5、从5名奥运志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,那么不同的选派方案共有()A.24种B.36种C.48种D.60种6、有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同的坐法种数是()A.234B.346C.350D.3637、五个工程队承建某项工程的5个不同的子工程,每个工程队承建1项,其中甲工程队不能承建1号子工程,那么不同的承建方案共有A.种B.种C.种D.种8、有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是A.18B.26C.29D.589、某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:序号123456节目如果A、B两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有()48/48\nA192种B144种C96种D72种10、在的展开式中,的系数为()A120B120C15D1511、假设,那么=()A.32B.1C.-1D.-3212、设的展开式的各项系数之和为M,二项式系数之和为N,假设M-N=240,那么展开式中x3的系数为A.-150B.150C.-500D.50013、2022年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进展编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有()A.36种B.108种C.216种D.432种14、现有甲、已、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、已、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为(  )A.14B.16C.18D.2015、假设的展开式中的系数是()A.B.C.D.48/48\n16、甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁两公司各承包2项,共有承包方式()A.3360种B.2240种C.1680种D.1120种二.填空题:本大题共15个小题。把答案填在题中横线上。17、从10名男同学,6名女同学中选3名参加体能测试,那么选到的3名同学中既有男同学又有女同学的不同选法共有种(用数字作答)18、展开式中的系数为_______________。19、从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,那么不同的挑选方法共有________________种。20、的二项展开式中的系数为(用数字作答).21、有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,那么不同的排法共有种(用数字作答).22、用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是(用数字作答)。23、某校安排5个班到4个工厂进展社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有种.(用数字作答)48/48\n24、某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,那么不同的选课方案有___________种。(以数字作答)25、要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,那么不同的排法种数为。26、将数字1,2,3,4,5,6拼成一列,记第个数为,假设,,,,那么不同的排列方法有种(用数字作答).27、展开式中含的整数次幂的项的系数之和为    (用数字作答).28、的展开式中的第5项为常数项,那么正整数的值是.29、安排3名支教教师去6所学校任教,每校至多2人,那么不同的分配方案共有种.(用数字作答)30、的展开式中的系数是.(用数字作答)31、安排3名支教教师去4所学校任教,每校至多2人,那么不同的分配方案共有种.(用数字作答)三.解答题:本大题共1个小题,解容许写出文字说明,证明过程或演算步骤。32、由0,1,2,3,4,5这六个数字。48/48\n(1)能组成多少个无重复数字的四位数?(2)能组成多少个无重复数字的四位偶数?(3)能组成多少个无重复数字且被25个整除的四位数?(4)组成无重复数字的四位数中比4032大的数有多少个?答案:一、选择题1、A2、C3、C4、C5、C6、B7、B8、D9、B10、C11、A12、B13、C14、C15、B16、C二、填空题17、42018、219、14020、1021、43222、4023、24024、2525、28826、3027、7228、829、21030、4031、60三、解答题解:(1)(2)(3)(4)w.w.w.k.s.5.u.c.o.m2022届高考数学二轮专题突破训练——平面向量一、选择题:本大题共15题,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1、在平行四边形ABCD中,AC为一条对角线,假设,,那么()A.(-2,-4)B.(-3,-5)C.(3,5)D.(2,4)w.w.w.k.s.5.u.c.o.m2假设过两点P1(-1,2),P2(5,6)的直线与x轴相交于点P,那么点P分有向线段所成的比的值为48/48\nA.-B.-C.D.3、在平行四边形中,与交于点是线段的中点,的延长线与交于点.假设,,那么()A.B.C.D.4、设D、E、F分别是△ABC的三边BC、CA、AB上的点,且那么与A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直5、已知O,A,B是平面上的三个点,直线AB上有一点C,满足,那么()A.B.C.D.6、平面向量,共线的充要条件是()A.,方向相同B.,两向量中至少有一个为零向量C.,D.存在不全为零的实数,,7、在中,,.假设点满足,那么()48/48\nA.B.C.D.8、已知两个单位向量与的夹角为,那么的充要条件是A.B.C.D.9、假设,,那么()A.(1,1)B.(-1,-1)C.(3,7)D.(-3,-7)10、已知平面向量,,且//,那么=()A、B、C、D、11、设=(1,-2),=(-3,4),c=(3,2),那么=A.B.0C.-3D.-1112、已知平面向量=(1,-3),=(4,-2),与垂直,那么是()A.-1B.1C.-2D.213、设平面向量A.B.C.D.14、已知两个单位向量与的夹角为,那么与互相垂直的充要条件是(  )A.或 B.或 C.或 D.为任意实数二.填空题:本大题共7小题。把答案填在题中横线上。48/48\n15、设向量,假设向量与向量共线,那么16、已知向量,,且,那么=____________17、关于平面向量.有以下三个命题:①假设,那么.②假设,,那么.③非零向量和满足,那么与的夹角为.其中真命题的序号为    .(写出所有真命题的序号)18、假设向量满足且与的夹角为,那么=___________________19、如图,在平行四边形中,,那么.20、,的夹角为,,那么.21、如图,正六边形中,有以下四个命题:A.B.C.D.其中真命题的代号是(写出所有真命题的代号).22、已知平面向量,,假设,那么48/48\n23、已知a是平面内的单位向量,假设向量b满足b·(a-b)=0,那么|b|的取值范围是答案:一、选择题1、B2、A3、B4、A5、A6、D7、A8、C9、B10、B11、C12、A13、A14、C二、填空题15、216、317、②18、19、320、721、ABD22、23、[0,1]2022届高考数学二轮专题突破训练----数列一、选择题:本大题共12小题,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1、设{an}是公比为正数的等比数列,假设a1=7,a5=16,那么数列{an}前7项和为()A.63B.64C.127D.1282记等差数列的前项和为,假设,,那么()A.16B.24C.36D.483、设等比数列的公比,前n项和为,那么()w.w.w.k.s.5.u.c.o.A.2B.4C.D.48/48\n4、已知是等差数列,,,那么该数列前10项和等于()A.64B.100C.110D.1205、设等比数列的公比,前n项和为,那么()w.w.w.k.s.5.u.c.o.A.2B.4C.D.6、假设等差数列的前5项和,且,那么()A.12B.13C.14D.157、等比数列中,公比,且,那么等于()A.B.C.D.或8、已知数列满足,那么=()A.0B.C.D.9、已知等比数列中,那么其前3项的和的取值范围是() (A)     (B)  (C)     (D)10、设等差数列的前项和为,假设,那么的最大值为()A、3B、4C、5D、61,3,511、假设数列{an}的前n项由如以下图的流程图输出依次给出,那么数列{an}的通项公式an=().48/48\nA.B.C.n-1D.n12、已知数列对任意的满足,且,那么等于()A.B.C.D.二.填空题:本大题共4个小题。把答案填在题中横线上。13、设Sn是等差数列{an}的前n项和,a12=-8,S9=-9,那么S16=.14、设数列中,,那么通项___15、、已知数列中,,那么16、已知函数f(x)=2x,等差数列{ax}的公差为2,假设f(a2+a4+a6+a8+a10)=4,那么log2[f(a1)·f(a2)·f(a3)·…·f(a10)]=三.解答题:本大题共6个小题,解容许写出文字说明,证明过程或演算步骤。17、已知数列{xn}的首项x1=3,通项xn=2np-np(n∈N*,p,p为常数),且x1,x4,x5成等差数列,求:(Ⅰ)p,q的值;(Ⅱ)数列{xn}前n项和Sn的公式。18、已知数列是一个等差数列,且,。(1)求的通项;(2)求前n项和的最大值。19、设数列的前项和(Ⅰ)求(Ⅱ)证明:是等比数列(Ⅲ)求的通项公式.20、数列是首项的等比数列,且,,成等差数列,(1)求数列的通项公式;48/48\n(2)假设,设为数列的前项和,假设≤对一切恒成立,求实数的最小值.22、设数列的前项和为.已知,,.(Ⅰ)设,求数列的通项公式;(Ⅱ)假设,,求的取值范围.在数列,中,a1=2,b1=4,且成等差数列,成等比数列()(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测,的通项公式,并证明你的结论;(Ⅱ)证明:.答案:一、选择题1、C2、D3、C4、B5、C6、B7、C8、C9、D10、B11、B12、C二、填空题13、-7214、15、16、-6三、解答题17、解:(Ⅰ)由48/48\np=1,q=1(Ⅱ)18、解:(Ⅰ)设的公差为,由已知条件,,解出,.所以.(Ⅱ).所以时,取到最大值.19、解:(Ⅰ)…………①(Ⅱ)由题设和①式知所以是首项为2,公比为2的等比数列(Ⅲ)20、解:(1)当时,,不成等差数列。当时,,∴,∴,∴48/48\n∴(2)≤,∴≤∴≥又≤,∴的最小值为21、解:(Ⅰ)依题意,,即,由此得.4分因此,所求通项公式为,.①6分(Ⅱ)由①知,,于是,当时,,,当时,48/48\n.又.综上,所求的的取值范围是.22、解:(Ⅰ)由条件得由此可得.猜测.用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即,那么当n=k+1时,.所以当n=k+1时,结论也成立.由①②,可知对一切正整数都成立.(Ⅱ).n≥2时,由(Ⅰ)知.48/48\n故综上,原不等式成立.w.w.w.k.s.5.u.c.o.m2022届高考数学二轮专题突破训练——函数一、选择题:本大题共15题,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.“函数存在反函数”是“函数在上为增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件w.w.w.k.s.5.u.c.o.2定义在上的函数满足(),,那么等于()A.2B.3C.6D.93.已知函数,是的反函数,假设(),那么的值为()A.B.1C.4D.104.设函数的反函数为,那么()A.在其定义域上是增函数且最大值为148/48\nB.在其定义域上是减函数且最小值为0C.在其定义域上是减函数且最大值为1D.在其定义域上是增函数且最小值为05.已知函数,那么不等式的解集是()A.B.C.D.6.已知函数是定义在R上的偶函数,且在区间上是增函数.令,那么()A.B.C.D.7.设函数的图象关于直线及直线对称,且时,,那么()A.B.C.D.8.命题“假设函数在其定义域内是减函数,那么”的逆否命题是()A、假设,那么函数在其定义域内不是减函数B、假设,那么函数在其定义域内不是减函数C、假设,那么函数在其定义域内是减函数48/48\nD、假设,那么函数在其定义域内是减函数9.设函数那么()A.有最大值B.有最小值C.是增函数D.是减函数10.设函数那么的值为(A)A.B.C.D.11.假设定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,,那么以下说法一定正确的选项是()A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数12.函数的图像关于()A.轴对称B.直线对称C.坐标原点对称D.直线对称13.设函数的图像关于直线及直线对称,且时,,那么(  )A.  B.  C.  D.14.假设函数的定义域是,那么函数的定义域是()A.B.C.D.48/48\n15.已知在R上是奇函数,且满足当时,,那么=()A.-2B.2C.-98D.98二.填空题:本大题共8小题。把答案填在题中横线上。16.函数的定义域为.17.已知,那么的值等于.18.设函数f(x)=ax2+c(a≠0).假设,0≤x0≤1,那么x0的值为.19.已知函数,对于上的任意,有如下条件:①;②;③.其中能使恒成立的条件序号是.20.设函数(x∈R),假设对于任意,都有≥0成立,那么实数=.三.解答题:本大题共8小题,解容许写出文字说明,证明过程或演算步骤。21.已知函数(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;(Ⅱ)假设斜率为-5的直线是曲线的切线,求此直线方程。48/48\n22、某单位用2160万元购得一块空地,方案在该地块上建造一栋至少10层、每层2000平方米的楼房,经测算,如果将楼房建为层,那么每平方米的平均建筑费用为(单位:元),为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)23.设函数曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))处的切线垂直于y轴.(Ⅰ)用a分别表示b和c;(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.24.设函数,曲线在点处的切线方程为。(1)求的解析式;(2)证明:曲线的图像是一个中心对称图形,并求其对称中心;(3)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值。25.已知是函数的一个极值点。(Ⅰ)求;(Ⅱ)求函数的单调区间;48/48\n(Ⅲ)假设直线与函数的图象有3个交点,求的取值范围。答案:一、选择题1.B2.C3.A4.D5.C6.A7.B8.A9.A10.A11.C12.C13.B14.B15.A二、填空题16.17.202218.19.②20.4三、解答题21.本小题主要考察应用导数研究函数性质的方法和根本运算能力.(总分值12分)解:(Ⅰ)f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,那么x=-m或x=m,当x变化时,f’(x)与f(x)的变化情况如下表:x(-∞,-m)-m(-m,)(,+∞)f’(x)+0-0+f(x)极大值极小值从而可知,当x=-m时,函数f(x)取得极大值9,即f(-m)=-m3+m3+m3+1=9,∴m=2.(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,依题意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.又f(-1)=6,f(-)=,所以切线方程为y-6=-5(x+1),或y-=-5(x+),即5x+y-1=0,或135x+27y-23=0.48/48\n22.解:设楼房每平方米的平均综合费为f(x)元,那么(x≥10,x∈Z+)令f´(x)=0得x=15当x>15时,f´(x)>0;当0<x<15时,f´(x)<0因此当x=15时,f(x)取最小值f(15)=2000;答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。23.解:(Ⅰ)因为又因为曲线通过点(0,2a+3),故又曲线在(-1,f(-1))处的切线垂直于y轴,故即-2a+b=0,因此b=2a.(Ⅱ)由(Ⅰ)得故当时,取得最小值-.此时有从而所以令,解得当48/48\n当当由此函数单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2).24.解:(Ⅰ),于是解得或因,故.(Ⅱ)证明:已知函数,都是奇函数.所以函数也是奇函数,其图像是以原点为中心的中心对称图形.而.可知,函数的图像按向量平移,即得到函数的图像,故函数的图像是以点为中心的中心对称图形.(Ⅲ)证明:在曲线上任取一点.由知,过此点的切线方程为.令得,切线与直线交点为.48/48\n令得,切线与直线交点为.直线与直线的交点为.从而所围三角形的面积为.所以,所围三角形的面积为定值.25.解:(Ⅰ)因为所以因此(Ⅱ)由(Ⅰ)知,当时,当时,所以的单调增区间是的单调减区间是(Ⅲ)由(Ⅱ)知,在内单调增加,在内单调减少,在上单调增加,且当或时,所以的极大值为,极小值为因为所以在的三个单调区间直线有的图象各有一个交点,当且仅当48/48\n因此,的取值范围为。w.w.w.k.s.5.u.c.o.m2022届高考数学二轮专题突破训练——三角函数一、选择题:本大题共12小题,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1、设函数,那么是(A)最小正周期为的奇函数(B)最小正周期为的偶函数(C)最小正周期为的奇函数(D)最小正周期为的偶函数2、为得到函数的图像,只需将函数的图像()A.向左平移个长度单位B向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位3、已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=()A.1B.2C.1/2D.1/34、已知,那么()(A)(B)(C)(D)5、函数图像的对称轴方程可能是()A.B.C.D.48/48\n6、将函数的图象按向量平移后所得的图象关于点中心对称,那么向量的坐标可能为()A.B.C.D.7、已知,那么的值是()A.B.C.D.8、已知为的三个内角的对边,向量.假设,且,那么角的大小分别为()A.B.C.D.9、函数f(x)=sin2x+在区间上的最大值是A.1B.C.D.1+10、在△ABC中,角A、B、C的对边分别为a、b、c,假设(a2+c2-b2)tanB=,那么角B的值为A.B.C.或D.或48/48\n11、函数f(x)=cosx(x)(xR)的图象按向量(m,0)平移后,得到函数y=-f′(x)的图象,那么m的值可以为A.B.C.-D.-12、设,其中,那么是偶函数的充要条件是()(A)  (B)  (C)  (D)二.填空题:本大题共4个小题。把答案填在题中横线上。13、在△ABC中,角A、B、C所对的边分别为a、b、c。假设那么cosA=14、在△ABC中,a,b,c分别是角A,B,C所对的边,已知那么A=.15、已知,且在区间有最小值,无最大值,那么=__________.16、在△ABC中,三个角A,B,C的对边边长分别为a=3,b=4,c=6,那么bccosA+cacosB+abcosC的值为.三.解答题:本大题共6个小题,解容许写出文字说明,证明过程或演算步骤。17、已知函数(,)为偶函数,且函数图象的两相邻对称轴间的距离为.48/48\n(Ⅰ)求的值;(Ⅱ)将函数的图象向右平移个单位后,得到函数的图象,求的单调递减区间.18、如图,在平面直角坐标系xOy中,以Ox轴为始边做两个锐角,,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为.(Ⅰ)求tan()的值;(Ⅱ)求的值.19、已知函数(Ⅰ)求函数的最小正周期和图象的对称轴方程(Ⅱ)求函数在区间上的值域20、已知.(Ⅰ)求的值;(Ⅱ)求的值.21、设的内角所对的边长分别为a、b、c,且.(Ⅰ)求的值;48/48\n(Ⅱ)求的最大值.22、已知函数,的最大值是1,其图像经过点.(1)求的解析式;(2)已知,且,,求的值答案:一、选择题1、B2、A3、B4、C5、D6、C7、C8、C9、C10、D11、A12、D二、填空题13、14、30°(或)15、16、三、解答题17、解:(Ⅰ).因为为偶函数,所以对,恒成立,因此.48/48\n即,整理得.因为,且,所以.又因为,故.所以.由题意得,所以.故.因此.(Ⅱ)将的图象向右平移个单位后,得到的图象,所以.当(),即()时,单调递减,因此的单调递减区间为().48/48\n18、【解析】本小题考察三角函数的定义、两角和的正切、二倍角的正切公式.解:由已知条件及三角函数的定义可知,,因为,为锐角,所以=因此(Ⅰ)tan()=(Ⅱ),所以∵为锐角,∴,∴=19解:(1)由函数图象的对称轴方程为48/48\n(2)因为在区间上单调递增,在区间上单调递减,所以当时,取最大值1又,当时,取最小值所以函数在区间上的值域为20、解:(Ⅰ)解法一:因为,所以,于是解法二:由题设得,即又sin2x+cos2x=1,从而25sin2x-5sinx-12=0,解得sinx=或sinx=因为,所以(Ⅱ)解:因为,故48/48\n所以21、解:(Ⅰ)由正弦定理得a=acosB-bcosA=()c===依题设得解得tanAcotB=4(II)由(I)得tanA=4tanB,故A、B都是锐角,于是tanB>0tan(A-B)==≤,且当tanB=时,上式取等号,因此tan(A-B)的最大值为22.解:(1)依题意有,那么,将点代入得,而,,,故;(2)依题意有,而,,48/48\n48/48

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 22:53:04 页数:48
价格:¥3 大小:786.82 KB
文章作者:U-336598

推荐特供

MORE