首页

高考数学复习专题教案第八章平面向量与空间向doc高中数学

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/15

2/15

剩余13页未读,查看更多内容需下载

第八章平面向量与空间向量§8.1平面向量及其运算一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。3.相等向量:长度相等且方向相同的向量。4.相反向量:我们把与向量长度相等,方向相反的向量叫做的相反向量。记作-。5.向量的加法:求两个向量和的运算。已知,。在平面内任取一点,作=,=,那么向量叫做与的和。记作+。6.向量的减法:求两个向量差的运算。已知,。在平面内任取一点O,作=,=,那么向量叫做与的差。记作-。   7.实数与向量的积:(1)定义:实数λ与向量的积是一个向量,记作λ,并规定: ①λ的长度|λ|=|λ|·||;②当λ>0时,λ的方向与的方向相同;当λ<0时,λ的方向与的方向相反;当λ=0时,λ=(2)实数与向量的积的运算律:设λ、μ为实数,那么①λ(μ)=(λμ)②(λ+μ)=λ+μ③λ(+)=λ+λ15/15\n8.向量共线的充分条件:向量与非零向量共线的充要条件是有且只有一个实数λ,使得=λ。另外,设=(x1,y1),=(x2,y2),那么//x1y2-x2y1=09.平面向量根本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2使 =λ1+λ2,其中不共线向量、叫做表示这一平面内所有向量的一组基底。10.定比分点设P1,P2是直线l上的两点,点P是不同于P1,P2的任意一点那么存在一个实数λ,使=λ,λ叫做分有向线段所成的比。假设点P1、P、P2的坐标分别为(x1,y1),(x,y),(x2,y2),那么有 特别当λ=1,即当点P是线段P1P2的中点时,有 11.平面向量的数量积(1)定义:已知两个非零向量和,它们的夹角为θ,那么数量||||cosθ叫做与的数量积(或内积),记作·,即·=||||cosθ规定:零向量与任一向量的数量积是0。(2)几何意义:数量积·等于的长度||与在的方向上的投影||cosθ的乘积。(3)性质:设,都是非零向量,是与方向相同的单位向量,θ是与的夹角,那么·=·=||cosθ ,⊥·=015/15\n当与同向时,·=|||| 当与反向时,·=-||||特别地,·=||2或||=cosθ=|·|≤||||(4)运算律:·=·(交换律)(λ)·=λ(·)=·(λ)(+)·=·+·(5)平面向量垂直的坐标表示的充要条件:设=(x1,y1),=(x2,y2),那么·=||·||cos90°=0x1x2+y1y2=012.平移公式:设P(x,y)是图形F上的任意一点,它在平移后图形F/上对应点为P/(x/,y/),且设的坐标为(h,k),那么由=+,得:(x/,y/)=(x,y)+(h,k)二、疑难知识导析1.向量的概念的理解,尤其是特殊向量“零向量”向量是既有大小,又有方向的量.向量的模是正数或0,是可以进展大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量;2.在运用三角形法那么和平行四边形法那么求向量的加减法时要注意起点和终点;3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时比照记忆;15/15\n4.定比分点公式中那么要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的;5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。三、经典例题导讲[例1]和=(3,-4)平行的单位向量是_________;错解:因为的模等于5,所以与平行的单位向量就是,即(,-)错因:在求解平行向量时没有考虑到方向相反的情况。正解:因为的模等于5,所以与平行的单位向量是,即(,-)或(-,)点评:平行的情况有方向相同和方向相反两种。读者可以自己再求解“和=(3,-4)垂直的单位向量”,结果也应该是两个。[例2]已知A(2,1),B(3,2),C(-1,4),假设A、B、C是平行四边形的三个顶点,求第四个顶点D的坐标。错解:设D的坐标为(x,y),那么有x-2=-1-3,y-1=4-2,即x=-2,y=3。故所求D的坐标为(-2,3)。错因:思维定势。习惯上,我们认为平行四边形的四个顶点是按照ABCD的顺序。其实,在这个题目中,根本就没有指出四边形ABCD。因此,还需要分类讨论。正解:设D的坐标为(x,y)当四边形为平行四边形ABCD时,有x-2=-1-3,y-1=4-2,即x=-2,y=3。解得D的坐标为(-2,3);15/15\n当四边形为平行四边形ADBC时,有x-2=3-(-1),y-1=2-4,即x=6,y=-1。解得D的坐标为(6,-1);当四边形为平行四边形ABDC时,有x-3=-1-2,y-2=4-1,即x=0,y=5。解得D的坐标为(0,5)。故第四个顶点D的坐标为(-2,3)或(6,-1)或(0,5)。[例3]已知P1(3,2),P2(8,3),假设点P在直线P1P2上,且满足|P1P|=2|PP2|,求点P的坐标。错解:由|P1P|=2|PP2|得,点P分P1P2所成的比为2,代入定比分点坐标公式得P()错因:对于|P1P|=2|PP2|这个等式,它所包含的不仅是点P为P1,P2的内分点这一种情况,还有点P是P1,P2的外分点。故须分情况讨论。正解:当点P为P1,P2的内分点时,P分P1P2所成的比为2,此时解得P();当点P为P1,P2的外分点时,P分P1P2所成的比为-2,此时解得P(13,4)。那么所求点P的坐标为()或(13,4)。点评:在运用定比分点坐标公式时,要审清题意,注意内外分点的情况。也就是分类讨论的数学思想。[例4]设向量,,,那么“”是“”的 A.充分不必要条件                B.必要不充分条件 C.充要条件                      D.既不充分也不必要条件分析:根据向量的坐标运算和充要条件的意义进展演算即可.15/15\n解:假设,∵,那么,代入坐标得:,即且.消去,得;反之,假设,那么且,即 那么,∴ 故“”是“”的充要条件.答案:C点评:此题意在稳固向量平行的坐标表示.[例5].已知=(1,-1),=(-1,3),=(3,5),求实数x、y,使=x+y.分析:根据向量坐标运算和待定系数法,用方程思想求解即可.解:由题意有    x+y=x(1,-1)+y(-1,3)=(x-y,-x+3y).    又=(3,5)    ∴x-y=3且-x+3y=5    解之得x=7且y=4点评:在向量的坐标运算中经常要用到解方程的方法.[例6]已知A(-1,2),B(2,8),=,=-,求点C、D和向量的坐标.分析:待定系数法设定点C、D的坐标,再根据向量,和关系进展坐标运算,用方程思想解之. 解:设C、D的坐标为、,由题意得 =(),=(3,6), =(),=(-3,-6) 又=,=- ∴()=(3,6),()=-(-3,-6)15/15\n 即()=(1,2),()=(1,2) ∴且,且 ∴且,且 ∴点C、D和向量的坐标分别为(0,4)、(-2,0)和(-2,-4)小结:此题涉及到方程思想,对学生运算能力要求较高.§8.2平面向量与代数、几何的综合应用一、知识导学1.余弦定理:三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的2倍,即2.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即                    二、疑难知识导析1.初中学过的勾股定理只是余弦定理的一种特殊情况。如当=时,=0,此时有;2.由于本节内容与代数、几何联系比较紧,故读者需对解斜三角形、解析几何中的圆锥曲线等知识非常熟悉方可。三经典例题导讲[例1]在ABC中,已知a2=b2+bc+c2,那么角A为(  )15/15\nA.   B.  C.   D.或错解:选A错因:公式记不牢,误将余弦定理中的“减”记作“加”。正解:∵a2=b2+bc+c2=b2+c2-2bc(-)=b2+c2-2bc·cos∴∠A=选 C.[例2]在△ABC中,已知,试判别其形状。错解:等腰三角形。错因:无视了两角互补,正弦值也相等的情形。直接由得,,即,那么。接着下结论,所求三角形为等腰三角形正解:由得,,即那么或,故三角形为直角三角形或等腰三角形。[例3]过抛物线:y2=2px(p>0)顶点O作两条互相垂直的弦OA、OB(如图),求证:直线AB过一定点,并求出这一定点.分析:对于向量a=(x1,y1),b=(x2,y2),有a//bx1y2-x2y1=0.可以用来处理解析几何中的三点共线与两直线平行问题.证明:由题意知可设A点坐标为(,t1),B点坐标为(,t2)∴=(,t1),=(,t2),∵OA⊥OB,∴•=0•+t1•t2=0t1•t2=-4p2①设直线AB过点M(a,b),那么=(a-,b-t2),=(-,t1-t2),15/15\n由于向量与是共线向量,∴(a-)(t1-t2)=(b-t2)(-)化简得2p(a-2p)=b(t1+t2)显然当a=2p,b=0时等式对任意的成立∴直线AB过定点,且定点坐标为M(2p,0)四典型习题导练1.已知锐角三角形的边长分别为2,3,x,那么第三边x的取值范围是()A.1<x<5    B.<x<C.<x<5   D.1<x<2.△ABC中,假设边a:b:c=:(1+):2,那么内角A=。3.某人在C点测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进10米到0,测得塔顶A仰角为30°,那么塔高=          。4.在△ABC中,已知B=30°,b=50,c=150,解三角形并判断三角形的形状。                   5.在△ABC中,已知=,判定△ABC是什么三角形。※§8.3空间向量及其运算    一、知识导学1空间直角坐标系:(1)假设空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示;(2)在空间选定一点和一个单位正交基底,以点为原点,分别以的方向为正方向建立三条数轴:轴、轴、轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系,点叫原点,向量15/15\n都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为平面,平面,平面;2.空间直角坐标系中的坐标:在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标.3.空间向量的直角坐标运算律:(1)假设,,那么,,,,,.(2)假设,,那么.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4模长公式:假设,那么.5.夹角公式:.6.两点间的距离公式:假设,,那么二、疑难知识导学1、对于这局部的一些知识点,读者可以对照平面向量的知识,看哪些知识可以直接推广,哪些需要作修改,哪些不能用的,稍作整理,以便于记忆;15/15\n2、空间向量作为新参加的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性,所以本节的学习难点在于掌握应用空间向量的常用技巧与方法,特别是体会其中的转化的思想方法.如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.3、向量运算的主要应用在于如下几个方面:(1)判断空间两条直线平行(共线)或垂直;(2)求空间两点间的距离;(3)求两条异面直线所成的角.4、本节内容对于立体几何的应用,读者需自行复习,这里不再赘述。三、经典例题导讲[例1]以下所表示的空间直角坐标系的直观图中,不正确的选项是(  )ABCD  错解:B、C、D中任选一个错因:对于空间直角坐标系的表示不清楚。有共同的原点,且两两垂直的三条数轴,只要符合右手系的规定,就可以作为空间直角坐标系.正解:易知(C)不符合右手系的规定,应选(C). [例2]已知点A(-3,-1,1),点B(-2,2,3),在Ox、Oy、Oz轴上分别取点L、M、N,使它们与A、B两点等距离.错因:对于坐标轴上点的坐标特征不明;使用方程解题的思想意识不够。15/15\n分析:设Ox轴上的点L的坐标为(x,0,0),由题意可得关于x的一元方程,从而解得x的值.类似可求得点M、N的坐标.解:设L、M、N的坐标分别为(x,0,0)、(0,y,0)、(0,0,z).  由题意,得  (x+3)2+1+1=(x+2)2+4+9,  9+(y+1)2+1=4+(y-2)2+9,  9+1+(z-1)2=4+4+(z-3)2.分别解得,故评注:空间两点的距离公式是平面内两点的距离公式的推广:假设点P、Q的坐标分别为(x1,y1,z1)、(x2,y2,z2),那么P、Q的距离为必须熟练掌握这个公式.[例3]设,,且,记,求与轴正方向的夹角的余弦值错解:取轴上的任一向量,设所求夹角为,∵∴,即余弦值为错因:审题不清。没有看清“轴正方向”,并不是轴正解:取轴正方向的任一向量,设所求夹角为,∵∴,即为所求15/15\n[例4]在ΔABC中,已知=(2,4,0),=(-1,3,0),那么∠ABC=___解:=∴∠ABC=135°[例5]已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),⑴求以向量为一组邻边的平行四边形的面积S;⑵假设向量分别与向量垂直,且||=,求向量的坐标分析:⑴∴∠BAC=60°,⑵设=(x,y,z),那么解得x=y=z=1或x=y=z=-1,∴=(1,1,1)或=(-1,-1,-1).[例6]已知正方体的棱长为,是的中点,是对角线的中点,求异面直线和的距离解:以为原点,所在的直线分别为轴,轴、轴建立空间直角坐标系,那么,设,∵在平面上,∴,即,∴,15/15\n∵,∴,解得:,∴,∴.另外,此题也可直接求与间的距离设与的公垂线为,且,设,设,那么,∴,∴,同理,∴,∴,∴,解得:,,.四、典型习题导练1.已知向量的夹角为()A.0°B.45°C.90°D.180°2.设A、B、C、D是空间不共面的四点,且满足那么△BCD是()A.钝角三角形B.直角三角形C.锐角三角形D.不确定3.已知是空间二向量,假设的夹角为.4.已知点G是△ABC的重心,O是空间任一点,假设为15/15\n.5.直三棱柱ABC—A1B1C1中,BC1⊥AB1,BC1⊥A1C求证:AB1=A1C6.如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点,(1)求(2)求(3)15/15

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 22:52:40 页数:15
价格:¥3 大小:177.29 KB
文章作者:U-336598

推荐特供

MORE