首页

高考数学总复习14抛物线练习题doc高中数学

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

2022高考数学总复习抛物线练习题一、选择题(本大题共10小题,每题5分,共50分)1.如果抛物线y2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1,0)B.(2,0)C.(3,0)D.(-1,0)2.圆心在抛物线y2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+y2-x-2y-=0B.x2+y2+x-2y+1=0C.x2+y2-x-2y+1=0D.x2+y2-x-2y+=03.抛物线上一点到直线的距离最短的点的坐标是()A.(1,1)B.()C.D.(2,4)4.一抛物线形拱桥,当水面离桥顶2m时,水面宽4m,假设水面下降1m,那么水面宽为()A.mB.2mC.4.5mD.9m5.平面内过点A(-2,0),且与直线x=2相切的动圆圆心的轨迹方程是()A.y2=-2xB.y2=-4xC.y2=-8xD.y2=-16x6.抛物线的顶点在原点,对称轴是x轴,抛物线上点(-5,m)到焦点距离是6,那么抛物线的方程是()A.y2=-2xB.y2=-4xC.y2=2xD.y2=-4x或y2=-36x-5-/5\n7.过抛物线y2=4x的焦点作直线,交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|=()A.8B.10C.6D.48.把与抛物线y2=4x关于原点对称的曲线按向量a平移,所得的曲线的方程是()A.B.C.D.9.过点M(2,4)作与抛物线y2=8x只有一个公共点的直线l有()A.0条B.1条C.2条D.3条10.过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P、Q两点,假设线段PF与FQ的长分别是p、q,那么等于()A.2aB.C.4aD.二、填空题(本大题共4小题,每题6分,共24分)11.抛物线y2=4x的弦AB垂直于x轴,假设AB的长为4,那么焦点到AB的距离为.12.抛物线y=2x2的一组斜率为k的平行弦的中点的轨迹方程是.13.P是抛物线y2=4x上一动点,以P为圆心,作与抛物线准线相切的圆,那么这个圆一定经过一个定点Q,点Q的坐标是.-5-/5\n14.抛物线的焦点为椭圆的左焦点,顶点在椭圆中心,那么抛物线方程为.三、解答题(本大题共6小题,共76分)15.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程.(12分)16.已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.(12分)17.动直线y=a,与抛物线相交于A点,动点B的坐标是,求线段AB中点M的轨迹的方程.(12分)18.河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的局部高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开场不能通航?(12分)19.如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.假设△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(14分)20.已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B,.-5-/5\n(Ⅰ)求的取值范围;(Ⅱ)假设线段AB的垂直平分线交轴于点N,求面积的最大值.(14分)参考答案一.选择题(本大题共10小题,每题5分,共50分)题号12345678910答案ADABCBACCC二.填空题(本大题共4小题,每题6分,共24分)11.212.13.(1,0)14.三、解答题(本大题共6题,共76分)15.(12分)[解析]:设动圆圆心为M(x,y),半径为r,那么由题意可得M到C(0,-3)的距离与到直线y=3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C(0,-3)为焦点,以y=3为准线的一条抛物线,其方程为.16.(12分)[解析]:设抛物线方程为,那么焦点F(),由题意可得,解之得或,故所求的抛物线方程为,17.(12分)[解析]:设M的坐标为(x,y),A(,),又B得消去,得轨迹方程为,即18.(12分)[解析]:如图建立直角坐标系,设桥拱抛物线方程为,由题意可知,B(4,-5)在抛物线上,所以,得,当船面两侧和抛物线接触时,船不能通航,设此时船面宽为AA’,那么A(),由得,又知船面露出水面上局部高为0.75米,所以=2米19.(14分)[解析]:如图建立坐标系,以l1为x轴,MN的垂直平分线为y轴,点O为坐标原点.由题意可知:曲线C是以点N为焦点,以l2为准线的抛物线的一段,其中A、B分别为C的端点.-5-/5\n设曲线段C的方程为,其中分别为A、B的横坐标,.所以,.由,得①②联立①②解得.将其代入①式并由p>0解得,或.因为△AMN为锐角三角形,所以,故舍去.∴p=4,.由点B在曲线段C上,得.综上得曲线段C的方程为.20.(14分)[解析]:(Ⅰ)直线的方程为,将,得.设直线与抛物线两个不同交点的坐标为、,那么又,∴.∵,∴.解得.(Ⅱ)设AB的垂直平分线交AB于点Q,令坐标为,那么由中点坐标公式,得,.∴.又为等腰直角三角形,∴,∴即面积最大值为w.w.w.k.s.5.u.c.o.mwww.ks5u.com-5-/5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 22:52:16 页数:5
价格:¥3 大小:79.43 KB
文章作者:U-336598

推荐特供

MORE