高考数学重拳运用向量法解题doc高中数学
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
难点3运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这局部内容的考察力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值.●案例探究[例1]如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.(1)求证:C1C⊥BD.(2)当的值为多少时,能使A1C⊥平面C1BD?请给出证明.命题意图:此题主要考察考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答此题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:此题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a⊥ba·b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设=a,=b,=c,依题意,|a|=|b|,、、中两两所成夹角为θ,于是=a-b,=c(a-b)=c·a-c·b=|c|·|a|cosθ-|c|·|b|cosθ=0,∴C1C⊥BD.(2)解:假设使A1C⊥平面C1BD,只须证A1C⊥BD,A1C⊥DC1,由=(a+b+c)·(a-c)=|a|2+a·b-b·c-|c|2=|a|2-|c|2+|b|·|a|cosθ-|b|·|c|·cosθ=0,得当|a|=|c|时,A1C⊥DC1,同理可证当|a|=|c|时,A1C⊥BD,∴=1时,A1C⊥平面C1BD.[例2]如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长;(2)求cos<>的值;(3)求证:A1B⊥C1M.命题意图:此题主要考察考生运用向量法中的坐标运算的方法来解决立体几何问题.属★★★★级题目.知识依托:解答此题的闪光点是建立恰当的空间直角坐标系O-xyz,进而找到点的坐标和求出向量的坐标.错解分析:此题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy内的A、B、C点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C为原点建立空间直角坐标系O-xyz.依题意得:B(0,1,0),N(1,0,1)∴||=.(2)解:依题意得:A1(1,0,2),C(0,0,0),B1(0,1,2).∴==(0,1,2)10/10\n=1×0+(-1)×1+2×2=3||=(3)证明:依题意得:C1(0,0,2),M()∴∴A1B⊥C1M.●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进展向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算表达了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进展思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?假设未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量假设不能直接用已知条件转化成的向量表示,那么它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进展运算,才能得到需要的结论?●歼灭难点训练一、选择题1.(★★★★)设A、B、C、D四点坐标依次是(-1,0),(0,2),(4,3),(3,1),那么四边形ABCD为()A.正方形B.矩形C.菱形D.平行四边形2.(★★★★)已知△ABC中,=a,=b,a·b<0,S△ABC=,|a|=3,|b|=5,那么a与b的夹角是()A.30°B.-150°C.150°D.30°或150°二、填空题3.(★★★★★)将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),那么向量a=_________.4.(★★★★)等腰△ABC和等腰Rt△ABD有公共的底边AB,它们所在的平面成60°角,假设AB=16cm,AC=17cm,那么CD=_________.三、解答题5.(★★★★★)如图,在△ABC中,设=a,=b,=c,=λa,(0<λ<1),=μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.7.(★★★★★)已知两点M(-1,0),N(1,0),且点P使成公差小于零的等差数列.(1)点P的轨迹是什么曲线?10/10\n(2)假设点P坐标为(x0,y0),Q为与的夹角,求tanθ.8.(★★★★★)已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明:BD∥平面EFGH;(3)设M是EG和FH的交点,求证:对空间任一点O,有.参考答案难点磁场解:(1)点M的坐标为xM=D点分的比为2.∴xD=(3)∠ABC是与的夹角,而=(6,8),=(2,-5).歼灭难点训练一、1.解析:=(1,2),=(1,2),∴=,∴∥,又线段AB与线段DC无公共点,∴AB∥DC且|AB|=|DC|,∴ABCD是平行四边形,又||=,=(5,3),||=,∴||≠|},∴ABCD不是菱形,更不是正方形;又=(4,1),∴1·4+2·1=6≠0,∴不垂直于,∴ABCD也不是矩形,应选D.答案:D2.解析:∵·3·5sinα得sinα=,那么α=30°或α=150°.又∵a·b<0,∴α=150°.答案:C二、3.(2,0)4.13cm三、5.解:∵与共线,∴=m=m(-)=m(μb-a),∴=+=a+m(μb-a)=(1-m)a+mμb①又与共线,∴=n=n(-)=n(λa-b),10/10\n∴=+=b+n(λa-b)=nλa+(1-n)b②由①②,得(1-m)a+μmb=λna+(1-n)b.∵a与b不共线,∴③解方程组③得:m=代入①式得c=(1-m)a+mμb=[λ(1-μ)a+μ(1-λ)b].6.解:(1)以点A为坐标原点O,以AB所在直线为Oy轴,以AA1所在直线为Oz轴,以经过原点且与平面ABB1A1垂直的直线为Ox轴,建立空间直角坐标系.由已知,得A(0,0,0),B(0,a,0),A1(0,0,a),C1(-a).(2)取A1B1的中点M,于是有M(0,a),连AM,MC1,有=(-a,0,0),且=(0,a,0),=(0,0a)由于·=0,·=0,所以MC1⊥面ABB1A1,∴AC1与AM所成的角就是AC1与侧面ABB1A1所成的角.∵=所以所成的角,即AC1与侧面ABB1A1所成的角为30°.7.解:(1)设P(x,y),由M(-1,0),N(1,0)得,=-=(-1-x,-y),=(1-x,-y),=-=(2,0),∴·=2(1+x),·=x2+y2-1,=2(1-x).于是,是公差小于零的等差数列,等价于所以,点P的轨迹是以原点为圆心,为半径的右半圆.(2)点P的坐标为(x0,y0)10/10\n8.证明:(1)连结BG,那么由共面向量定理的推论知:E、F、G、H四点共面,(其中=)(2)因为.所以EH∥BD,又EH面EFGH,BD面EFGH所以BD∥平面EFGH.(3)连OM,OA,OB,OC,OD,OE,OG由(2)知,同理,所以,EHFG,所以EG、FH交于一点M且被M平分,所以.难点3运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这局部内容的考察力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值.●案例探究[例1]如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.(1)求证:C1C⊥BD.(2)当的值为多少时,能使A1C⊥平面C1BD?请给出证明.命题意图:此题主要考察考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答此题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:此题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a⊥ba·b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设=a,=b,=c,依题意,|a|=|b|,、、中两两所成夹角为θ,于是=a-b,=c(a-b)=c·a-c·b=|c|·|a|cosθ-|c|·|b|cosθ=0,∴C1C⊥BD.(2)解:假设使A1C⊥平面C1BD,只须证A1C⊥BD,A1C⊥DC1,10/10\n由=(a+b+c)·(a-c)=|a|2+a·b-b·c-|c|2=|a|2-|c|2+|b|·|a|cosθ-|b|·|c|·cosθ=0,得当|a|=|c|时,A1C⊥DC1,同理可证当|a|=|c|时,A1C⊥BD,∴=1时,A1C⊥平面C1BD.[例2]如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长;(2)求cos<>的值;(3)求证:A1B⊥C1M.命题意图:此题主要考察考生运用向量法中的坐标运算的方法来解决立体几何问题.属★★★★级题目.知识依托:解答此题的闪光点是建立恰当的空间直角坐标系O-xyz,进而找到点的坐标和求出向量的坐标.错解分析:此题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy内的A、B、C点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C为原点建立空间直角坐标系O-xyz.依题意得:B(0,1,0),N(1,0,1)∴||=.(2)解:依题意得:A1(1,0,2),C(0,0,0),B1(0,1,2).∴==(0,1,2)=1×0+(-1)×1+2×2=3||=(3)证明:依题意得:C1(0,0,2),M()∴∴A1B⊥C1M.●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进展向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算表达了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进展思考:10/10\n(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?假设未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量假设不能直接用已知条件转化成的向量表示,那么它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进展运算,才能得到需要的结论?●歼灭难点训练一、选择题1.(★★★★)设A、B、C、D四点坐标依次是(-1,0),(0,2),(4,3),(3,1),那么四边形ABCD为()A.正方形B.矩形C.菱形D.平行四边形2.(★★★★)已知△ABC中,=a,=b,a·b<0,S△ABC=,|a|=3,|b|=5,那么a与b的夹角是()A.30°B.-150°C.150°D.30°或150°二、填空题3.(★★★★★)将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),那么向量a=_________.4.(★★★★)等腰△ABC和等腰Rt△ABD有公共的底边AB,它们所在的平面成60°角,假设AB=16cm,AC=17cm,那么CD=_________.三、解答题5.(★★★★★)如图,在△ABC中,设=a,=b,=c,=λa,(0<λ<1),=μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.7.(★★★★★)已知两点M(-1,0),N(1,0),且点P使成公差小于零的等差数列.(1)点P的轨迹是什么曲线?(2)假设点P坐标为(x0,y0),Q为与的夹角,求tanθ.8.(★★★★★)已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明:BD∥平面EFGH;(3)设M是EG和FH的交点,求证:对空间任一点O,有.参考答案难点磁场解:(1)点M的坐标为xM=D点分的比为2.10/10\n∴xD=(3)∠ABC是与的夹角,而=(6,8),=(2,-5).歼灭难点训练一、1.解析:=(1,2),=(1,2),∴=,∴∥,又线段AB与线段DC无公共点,∴AB∥DC且|AB|=|DC|,∴ABCD是平行四边形,又||=,=(5,3),||=,∴||≠|},∴ABCD不是菱形,更不是正方形;又=(4,1),∴1·4+2·1=6≠0,∴不垂直于,∴ABCD也不是矩形,应选D.答案:D2.解析:∵·3·5sinα得sinα=,那么α=30°或α=150°.又∵a·b<0,∴α=150°.答案:C二、3.(2,0)4.13cm三、5.解:∵与共线,∴=m=m(-)=m(μb-a),∴=+=a+m(μb-a)=(1-m)a+mμb①又与共线,∴=n=n(-)=n(λa-b),∴=+=b+n(λa-b)=nλa+(1-n)b②由①②,得(1-m)a+μmb=λna+(1-n)b.∵a与b不共线,∴③解方程组③得:m=代入①式得c=(1-m)a+mμb=[λ(1-μ)a+μ(1-λ)b].6.解:(1)以点A为坐标原点O,以AB所在直线为Oy轴,以AA1所在直线为Oz轴,以经过原点且与平面ABB1A1垂直的直线为Ox轴,建立空间直角坐标系.由已知,得A(0,0,0),B(0,a,0),A1(0,0,a),C1(-a).10/10\n(2)取A1B1的中点M,于是有M(0,a),连AM,MC1,有=(-a,0,0),且=(0,a,0),=(0,0a)由于·=0,·=0,所以MC1⊥面ABB1A1,∴AC1与AM所成的角就是AC1与侧面ABB1A1所成的角.∵=所以所成的角,即AC1与侧面ABB1A1所成的角为30°.7.解:(1)设P(x,y),由M(-1,0),N(1,0)得,=-=(-1-x,-y),=(1-x,-y),=-=(2,0),∴·=2(1+x),·=x2+y2-1,=2(1-x).于是,是公差小于零的等差数列,等价于所以,点P的轨迹是以原点为圆心,为半径的右半圆.(2)点P的坐标为(x0,y0)8.证明:(1)连结BG,那么10/10\n由共面向量定理的推论知:E、F、G、H四点共面,(其中=)(2)因为.所以EH∥BD,又EH面EFGH,BD面EFGH所以BD∥平面EFGH.(3)连OM,OA,OB,OC,OD,OE,OG由(2)知,同理,所以,EHFG,所以EG、FH交于一点M且被M平分,所以.10/10
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)