2023高考数学 夺分法宝 选择,填空、三角函数、立体几何(解析版)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
2013高考数学夺分法宝选择,填空、三角函数、立体几何(解析版)【2010高考真题——上海卷】(文数)18.若△的三个内角满足,则△(A)一定是锐角三角形.(B)一定是直角三角形.(C)一定是钝角三角形.(D)可能是锐角三角形,也可能是钝角三角形.解析:由及正弦定理得a:b:c=5:11:13由余弦定理得,所以角C为钝角19.(本题满分12分)已知,化简:.解析:原式=lg(sinx+cosx)+lg(cosx+sinx)-lg(sinx+cosx)2=0.【2010高考真题——湖南卷】(文数)7.在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=a,则A.a>bB.a<bC.a=bD.a与b的大小关系不能确定【命题意图】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题。(文数)16.(本小题满分12分)已知函数(I)求函数的最小正周期。-14-\n(II)求函数的最大值及取最大值时x的集合。【2010高考真题——浙江卷】(理数)(9)设函数,则在下列区间中函数不存在零点的是(A)(B)(C)(D)解析:将的零点转化为函数的交点,数形结合可知答案选A,本题主要考察了三角函数图像的平移和函数与方程的相关知识点,突出了对转化思想和数形结合思想的考察,对能力要求较高,属较难题(理数)(4)设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:因为0<x<,所以sinx<1,故xsin2x<xsinx,结合xsin2x与xsinx的取值范围相同,可知答案选B,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(理数)(11)函数的最小正周期是__________________.解析:故最小正周期为π,本题主要考察了三角恒等变换及相关公式,属中档题(文数)(12)函数的最小正周期是。-14-\n答案:(理数)(18)(本题满分l4分)在△ABC中,角A、B、C所对的边分别为a,b,c,已知(I)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.解析:本题主要考察三角变换、正弦定理、余弦定理等基础知识,同事考查运算求解能力。(Ⅰ)解:因为cos2C=1-2sin2C=,及0<C<π所以sinC=.(Ⅱ)解:当a=2,2sinA=sinC时,由正弦定理,得c=4由cos2C=2cos2C-1=,J及0<C<π得cosC=±由余弦定理c2=a2+b2-2abcosC,得b2±b-12=0解得b=或2所以b=b=c=4或c=4文数)(18)(本题满分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足。(Ⅰ)求角C的大小;(Ⅱ)求的最大值。-14-\n【2010高考真题——山东卷】(文数)(15)在中,角A,B,C所对的边分别为a,b,c,若,,,则角A的大小为.答案:(理数)【2010高考真题——陕西卷】(文数)3.函数f(x)=2sinxcosx是[C](A)最小正周期为2π的奇函数(B)最小正周期为2π的偶函数(C)最小正周期为π的奇函数(D)最小正周期为π的偶函数解析:本题考查三角函数的性质f(x)=2sinxcosx=sin2x,周期为π的奇函数-14-\n(文数)17.(本小题满分12分)在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.解在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos=,ADC=120°,ADB=60°在△ABD中,AD=10,B=45°,ADB=60°,由正弦定理得,AB=【2010高考真题——辽宁卷】(文数)(6)设,函数的图像向右平移个单位后与原图像重合,则的最小值是(A)(B)(C)(D)3解析:选C.由已知,周期(理数)(5)设>0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是(A)(B)(C)(D)3【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。【解析】将y=sin(x+)+2的图像向右平移个单位后为-14-\n,所以有=2k,即,又因为,所以k≥1,故≥,所以选C(文数)(17)(本小题满分12分)在中,分别为内角的对边,且(Ⅰ)求的大小;(Ⅱ)若,试判断的形状.解:(Ⅰ)由已知,根据正弦定理得即由余弦定理得故(Ⅱ)由(Ⅰ)得又,得因为,故所以是等腰的钝角三角形。(理数)(17)(本小题满分12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且(Ⅰ)求A的大小;(Ⅱ)求的最大值.解:(Ⅰ)由已知,根据正弦定理得-14-\n即由余弦定理得故,A=120°……6分(Ⅱ)由(Ⅰ)得:故当B=30°时,sinB+sinC取得最大值1。……12分【2010高考真题——全国Ⅱ卷】(文数)(3)已知,则(A)(B)(C)(D)【解析】B:本题考查了二倍角公式及诱导公式,∵sina=2/3,∴(2文数)(17)(本小题满分10分)中,为边上的一点,,,,求。【解析】本题考查了同角三角函数的关系、正弦定理与余弦定理的基础知识。由与的差求出,根据同角关系及差角公式求出的正弦,在三角形ABD中,由正弦定理可求得AD。(理数)(7)为了得到函数的图像,只需把函数的图像(A)向左平移个长度单位(B)向右平移个长度单位(C)向左平移个长度单位(D)向右平移个长度单位-14-\n【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】=,=,所以将的图像向右平移个长度单位得到的图像,故选B.(理数)(13)已知是第二象限的角,,则.【答案】【命题意图】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程,考查考生的计算能力.【解析】由得,又,解得,又是第二象限的角,所以.(2文数)(13)已知α是第二象限的角,tanα=1/2,则cosα=__________【解析】:本题考查了同角三角函数的基础知识∵,∴(2理数)(17)(本小题满分10分)中,为边上的一点,,,,求.【命题意图】本试题主要考查同角三角函数关系、两角和差公式和正弦定理在解三角形中的应用,考查考生对基础知识、基本技能的掌握情况.【参考答案】由cos∠ADC=>0,知B<.由已知得cosB=,sin∠ADC=.-14-\n从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB==.由正弦定理得,所以=.【点评】三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.【2010高考真题——江西卷】(理数)7.E,F是等腰直角△ABC斜边AB上的三等分点,则()A.B.C.D.【答案】D【解析】考查三角函数的计算、解析化应用意识。解法1:约定AB=6,AC=BC=,由余弦定理CE=CF=,再由余弦定理得,解得解法2:坐标化。约定AB=6,AC=BC=,F(1,0),E(-1,0),C(0,3)利用向量的夹角公式得,解得。(理数)17.(本小题满分12高☆考♂资♀源*网分)已知函数。(1)当m=0时,求在区间上的取值范围;(2)当时,,求m的值。-14-\n【解析】考查三角函数的化简、三角函数的图像和性质、已知三角函数值求值问题。依托三角函数化简,考查函数值域,作为基本的知识交汇问题,考查基本三角函数变换,属于中等题.解:(1)当m=0时,,由已知,得从而得:的值域为(2)化简得:当,得:,,代入上式,m=-2.【2010高考真题——重庆卷】(文数)(6)下列函数中,周期为,且在上为减函数的是(A)(B)(C)(D)解析:C、D中函数周期为2,所以错误当时,,函数为减函数而函数为增函数,所以选A(理数)-14-\n(6)已知函数的部分图象如题(6)图所示,则A.=1=B.=1=-C.=2=D.=2=-解析:由五点作图法知,=-(文数)(15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线,各段弧所在的圆经过同一点(点不在上)且半径相等.设第段弧所对的圆心角为,则____________.解析:又,所以(理数)(16)(本小题满分13分,(I)小问7分,(II)小问6分)设函数。求的值域;记的内角A、B、C的对边长分别为a,b,c,若=1,b=1,c=,求a的值。【2010高考真题——北京卷】(理数)(10)在△ABC中,若b=1,c=,,则a=。答案1【2010高考真题——广东卷】(2010理数)11.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=,A+C=2B,则sinC=.-14-\n11.1.解:由A+C=2B及A+B+C=180°知,B=60°.由正弦定理知,,即.由知,,则,,(文数)【2010高考真题——福建卷】(文数)16.观察下列等式:①cos2a=2-1;②cos4a=8-8+1;③cos6a=32-48+18-1;④cos8a=128-256+160-32+1;⑤cos10a=m-1280+1120+n+p-1.可以推测,m–n+p=.【答案】962【解析】因为所以;观察可得,,所以m–n+p=962。【命题意图】本小题考查三角变换、类比推理等基础知识,考查同学们的推理能力等。(理数)14.已知函数和的图象的对称轴完全相同。若,则的取值范围是。-14-\n【答案】【解析】由题意知,,因为,所以,由三角函数图象知:的最小值为,最大值为,所以的取值范围是。【2010高考真题——江苏卷】10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____。[解析]考查三角函数的图象、数形结合思想。线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,解得sinx=。线段P1P2的长为13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则=____▲_____。[解析]考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。一题多解。(方法一)考虑已知条件和所求结论对于角A、B和边a、b具有轮换性。当A=B或a=b时满足题意,此时有:,,,,=4。(方法二),【2010高考真题——安徽卷】(文数)16、(本小题满分12分)-14-\n的面积是30,内角所对边长分别为,。(Ⅰ)求;(Ⅱ)若,求的值。【命题意图】本题考查同角三角函数的基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.【解题指导】(1)根据同角三角函数关系,由得的值,再根据面积公式得;直接求数量积.由余弦定理,代入已知条件,及求a的值.解:由,得.又,∴.(Ⅰ).(Ⅱ),∴.【规律总结】根据本题所给的条件及所要求的结论可知,需求的值,考虑已知的面积是30,,所以先求的值,然后根据三角形面积公式得的值.第二问中求a的值,根据第一问中的结论可知,直接利用余弦定理即可.-14-
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)