首页

2023高考数学二轮复习专题练三核心热点突破专题三立体几何第1讲空间几何体的表面积和体积含解析202303112174

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/15

2/15

剩余13页未读,查看更多内容需下载

第1讲 空间几何体的表面积和体积高考定位 简单几何体的表面积与体积计算,主要以选择题、填空题的形式呈现,在解答题中,有时与空间线、面位置证明相结合,面积与体积的计算作为其中的一问.真题感悟1.(2020·全国Ⅰ卷)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为(  )A.64πB.48πC.36πD.32π解析 如图所示,设球O的半径为R,⊙O1的半径为r,因为⊙O1的面积为4π,所以4π=πr2,解得r=2,又AB=BC=AC=OO1,所以=2r,解得AB=2,故OO1=2,所以R2=OO+r2=(2)2+22=16,所以球O的表面积S=4πR2=64π.故选A.答案 A2.(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB,如图所示,则△PAB的内切圆为圆锥的内切球的大圆.在△PAB中,PA=PB=3,D为AB的中点,AB=2,E为切点,则PD=2,△PEO∽△PDB,故=,即=,解得r=,故内切球的体积为π=π.答案 π3.(2020·新高考山东卷)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,为半径的球面与侧面BCC1B1的交线长为__________.\n解析 如图,设B1C1的中点为E,球面与棱BB1,CC1的交点分别为P,Q,连接DB,D1B1,D1P,D1E,EP,EQ,由∠BAD=60°,AB=AD,知△ABD为等边三角形,∴D1B1=DB=2,∴△D1B1C1为等边三角形,则D1E=且D1E⊥平面BCC1B1,∴E为球面截侧面BCC1B1所得截面圆的圆心,设截面圆的半径为r,则r===.可得EP=EQ=,∴球面与侧面BCC1B1的交线为以E为圆心的圆弧PQ.又D1P=,∴B1P==1,同理C1Q=1,∴P,Q分别为BB1,CC1的中点,∴∠PEQ=,知的长为×=.答案 4.(2019·全国Ⅱ卷)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图①).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图②是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析 依题意知,题中的半正多面体的上部分有9个面,中间部分有8个面,下部分为9个面,共有9+8+9=26(个)面,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则x+x+x=1,解得x=-1,故题中的半正多面体的棱长为-1.答案 26 -1考点整合1.空间几何体的两组常用公式(1)柱体、锥体、台体、球的表面积公式:\n①圆柱的表面积S=2πr(r+l);②圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r′2+r2+r′l+rl);④球的表面积S=4πR2.(2)柱体、锥体和球的体积公式:①V柱体=Sh(S为底面面积,h为高);②V锥体=Sh(S为底面面积,h为高);③V球=πR3.2.球的简单组合体中几何体度量之间的关系,如棱长为a的正方体的外接球、内切球、棱切球的半径分别为a,,a.热点一 空间几何体的表面积【例1】(1)如图所示的几何体是从棱长为2的正方体中截去以正方体的某个顶点为球心,2为半径的球体后的剩余部分,则该几何体的表面积为(  )A.24-3πB.24-πC.24+πD.24+5π(2)(多选题)等腰直角三角形的直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为(  )A.πB.(1+)πC.2πD.(2+)π解析 (1)由题意知该几何体的表面积S=6×22-3××π×22+×4×π×22=24-π.故选B.(2)如果是绕直角边旋转,则形成圆锥,圆锥底面半径为1,高为1,母线就是直角三角形的斜边,长为,所以所形成的几何体的表面积S=π×1×+π×12=(+1)π.如果绕斜边旋转,则形成的是上、下两个圆锥,圆锥的半径是直角三角形斜边上的高,两个圆锥的母线都是直角三角形的直角边,母线长是1,所以形成的几何体的表面积S′=2×π××1=\nπ.综上可知,形成几何体的表面积是(+1)π或π.故选AB.答案 (1)B (2)AB探究提高 1.求空间几何体的表面积,首先要掌握几何体的表面积公式,其次把不规则几何体分割成几个规则的几何体.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(2)旋转体的表面积问题注意其侧面展开图的应用.【训练1】(1)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为(  )A.12πB.12πC.8πD.10π(2)(2020·衡水金卷)一个圆锥的轴截面是边长为4的等边三角形,在该圆锥中有一个内接圆柱(下底面在圆锥底面上,上底面的圆周在圆锥侧面上),则当该圆柱侧面积取最大值时,该圆柱的高为(  )A.1B.2C.3D.解析 (1)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为2,底面圆的直径为2.所以S表面积=2×π×()2+2π××2=12π.(2)如图,设圆柱底面半径为r(0<r<2),高为h,则=,即h=(2-r),其侧面积为S=2πr(2-r)=2π(-r2+2r),根据二次函数性质,当r=1时,侧面积取得最大值,此时h=.答案 (1)B (2)D热点二 空间几何体的体积【例2】(1)(2020·济南模拟)已知三棱锥S-ABC中,∠SAB=∠ABC=,SB=4,SC=2,AB=2,BC=6,则三棱锥S-ABC的体积是(  )A.4B.6C.4D.6(2)(2020·长沙模拟)如图,在四面体PBCD中,点A是CD的中点,PA=AD,△ABC为等边三角形,边长为6,PB=8,PC=10,则△PBD的面积为________,四面体PABC的体积为________.\n解析 (1)∵∠ABC=,AB=2,BC=6,∴AC===2.∵∠SAB=,AB=2,SB=4,∴AS===2.由SC=2,得AC2+AS2=SC2,∴AC⊥AS.又∵SA⊥AB,AC∩AB=A,∴AS⊥平面ABC,∴AS为三棱锥S-ABC的高,∴V三棱锥S-ABC=××2×6×2=4.故选C.(2)因为△ABC为等边三角形,边长为6,点A为CD的中点,所以AD=AB=6,所以△ADB为等腰三角形.又∠DAB=180°-∠CAB=120°,所以∠ADB=(180°-120°)=30°,所以∠ADB+∠DCB=90°,所以∠DBC=90°,所以CB⊥DB,所以DB===6.因为PB=8,PC=10,BC=6,所以PC2=PB2+BC2,所以CB⊥PB.又DB∩PB=B,DB⊂平面PBD,PB⊂平面PBD,所以CB⊥平面PBD.因为DA=AC=AP=6,所以△PDC为直角三角形,且∠DPC=90°,所以PD===2.又DB=6,PB=8,所以DB2=PD2+PB2,即△PBD为直角三角形,所以S△PBD=×8×2=8.因为点A为DC的中点,所以VP-ABC=VP-CBD=VC-PBD=××S△PBD×CB=××8×6=8,即四面体PABC的体积为8.答案 (1)C (2)8 8探究提高 1.求三棱锥的体积:等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积:常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.【训练2】(1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为(  )A.πB.C.D.(2)(2020·东北三校一联)如图,四边形ABCD是边长为2的正方形,ED⊥平面ABCD,FC⊥平面ABCD,ED=2FC=2,则四面体ABEF的体积为(  )\nA.B.C.1D.解析 如图画出圆柱的轴截面ABCD,O为球心.球半径R=OA=1,球心到底面圆的距离为OM=.∴底面圆半径r=AM==,故圆柱体积V=π·r2·h=π·×1=.(2)∵ED⊥平面ABCD且AD⊂平面ABCD,∴ED⊥AD.∵在正方形ABCD中,AD⊥DC,而DC∩ED=D,∴AD⊥平面CDEF.易知FC==1,VA-BEF=VABCDEF-VF-ABCD-VA-DEF.∵VE-ABCD=ED×S正方形ABCD×=2×2×2×=,VB-EFC=BC×S△EFC×=2×2×1××=,∴VABCDEF=+=.又VF-ABCD=FC×S正方形ABCD×=1×2×2×=,VA-DEF=AD×S△DEF×=2×2×2××=,VA-BEF=--=.故选B.答案 (1)B (2)B热点三 多面体与球的切、接问题【例3】(1)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(  )A.4πB.C.6πD.(2)在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P-ABCD为阳马,侧棱PA⊥底面ABCD,且PA=3,BC=AB\n=4,设该阳马的外接球半径为R,内切球半径为r,则R=________;内切球的体积V=________.解析 (1)由AB⊥BC,AB=6,BC=8,得AC=10.要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.则×6×8=×(6+8+10)·r,所以r=2.∴2r=4>3不合题意.球与三棱柱的上、下底面相切时,球的半径R最大.由2R=3,即R=.故球的最大体积V=πR3=π.(2)在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,且底面为矩形,将该“阳马”补成长方体,则(2R)2=AB2+AD2+AP2=16+16+9=41,因此R=.依题意Rt△PAB≌Rt△PAD,则内切球O在侧面PAD内的正视图是△PAD的内切圆,故内切球的半径r=(3+4-5)=1,则V=πr3=π.答案 (1)B (2) π探究提高 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P,A,B,C且PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练3】(1)(2020·太原模拟)如图所示,在直三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,AB=BC=1,点D为侧棱BB1上的动点.若△ADC1周长的最小值为+,则三棱锥C1-ABC的外接球的体积为(  )\nA.2πB.πC.D.3π(2)(2020·烟台诊断)已知点A,B,C在半径为2的球面上,满足AB=AC=1,BC=,若S是球面上任意一点,则三棱锥S-ABC体积的最大值为________.解析 (1)将侧面ABB1A1和侧面BCC1B1展开在同一平面内,示意图如图所示,易知当D为侧棱BB1的中点时,△ADC1的周长最小,此时设BD=x(x>0),则2+=+,解得x=,所以CC1=1,AC1=.又三棱锥C1-ABC的外接球的球心为AC1的中点,所以外接球的半径R=,于是三棱锥C1-ABC的外接球的体积为V=πR3=π×=π.(2)设球心为O,△ABC的外心为D,则OD⊥平面ABC.在△ABC中,由余弦定理,得cosA==-,则sinA=.所以S△ABC=AB·ACsinA=×1×1×=,且△ABC的外接圆半径DA===1.因此在Rt△OAD中,OD===.当三棱锥S-ABC的高最大时,三棱锥S-ABC的体积取最大值,而三棱锥S-ABC的高的最大值为+2,所以三棱锥S-ABC的体积的最大值为××(+2)=.答案 (1)B (2)A级 巩固提升一、选择题1.母线长为5的圆锥的侧面展开图的圆心角等于,则该圆锥的体积为(  )A.16πB.8πC.D.解析 ∵母线长为5的圆锥的侧面展开图的圆心角等于,∴侧面展开图的弧长为5×=8π,设底面圆半径为r,弧长8π=底面周长=2πr,∴r=4,∴圆锥的高h==3,∴圆锥体积V=×π×r2×h=16π.答案 A\n2.(2020·全国百校联考)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=BB1=1,M是AC的中点,则三棱锥B1-ABM的外接球的表面积为(  )A.πB.2πC.πD.π解析 取AB的中点D,取B1A1的中点D1,连接DD1,设O是线段DD1的中点,在△ABC中,AB⊥BC,AB=BC,M为AC中点,∴BM⊥AC.因此BD=DM=DA=D1B1,从而OB1=OB=OA=OM,故O为三棱锥B1-ABM的外接球心,∴R2=OB2=OD2+BD2=+=,故三棱锥外接球的表面积S=4πR2=2π.答案 B3.(2020·济南检测)已知球O是三棱锥P-ABC的外接球,PA=AB=PB=AC=2,CP=2,点D是PB的中点,且CD=,则球O的体积为(  )A.B.C.D.解析 依题意,由PA=AC=2,CP=2,得AP⊥AC.连接AD,由点D是PB的中点且PA=AB=PB=2,得AD=,又CD=,AC=2,可知AD⊥AC,又AP∩AD=A,AP⊂平面PAB,AD⊂平面PAB,所以AC⊥平面PAB.以△PAB为底面,AC为侧棱补成一个直三棱柱,则球O是该三棱柱的外接球,球心O到底面△PAB的距离d=AC=1.由正弦定理得△PAB的外接圆半径r==,所以球O的半径R==.故球O的体积V=πR3=π××=π.答案 C4.(多选题)如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF\n=,则下列结论中错误的是(  )A.AC⊥AFB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.△AEF的面积与△BEF的面积相等解析 由题意及图形知,当点F与点B1重合时,∠CAF=60°,故A错误;由正方体ABCD-A1B1C1D1的两个底面平行,EF⊂平面A1B1C1D1,知EF∥平面ABCD,故B正确;由几何体的性质及图形知,三角形BEF的面积是定值,点A到平面DD1B1B的距离是定值,故可得三棱锥A-BEF的体积为定值,故C正确;由图形可以看出,B到直线EF的距离与A与直线EF的距离不相等,故△AEF的面积与△BEF的面积不相等,故D错误.故选AD.答案 AD5.(多选题)长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,则(  )A.长方体的表面积为20B.长方体的体积为6C.沿长方体的表面从A到C1的最短距离为3D.沿长方体的表面从A到C1的最短距离为2解析 长方体的表面积为2×(3×2+3×1+2×1)=22,A错误.长方体的体积为3×2×1=6,B正确.如图1所示,长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=1,将侧面ABB1A1和侧面BCC1B1展开,如图2所示.连接AC1,则有AC1==,即经过侧面ABB1A1和侧面BCC1B1时,A到C1的最短距离是;将侧面ABB1A1和底面A1B1C1D1展开,如图3所示,连接AC1,则有AC1==3,即经过侧面ABB1A1和底面A1B1C1D1时,A到C1的最短距离是3;将侧面ADD1A1和底面A1B1C1D1展开,如图4所示.\n连接AC1,则有AC1==2,即经过侧面ADD1A1和底面A1B1C1D1时,A到C1的最短距离是2.因为3<2<,所以沿长方体表面由A到C1的最短距离是3,C正确,D错误.故选BC.答案 BC二、填空题6.(2020·浙江卷)已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是__________.解析 如图,设圆锥的母线长为l,底面半径为r,则圆锥的侧面积S侧=πrl=2π,即r·l=2.由于侧面展开图为半圆,可知πl2=2π,可得l=2,因此r=1.答案 17.如图,已知正方体ABCD-A1B1C1D1的棱长为1,则四棱锥A1-BB1D1D的体积为________.解析 法一 连接A1C1交B1D1于点E,则A1E⊥B1D1,A1E⊥BB1,则A1E⊥平面BB1D1D,所以A1E为四棱锥A1-BB1D1D的高,且A1E=,矩形BB1D1D的长和宽分别为,1,故VA1-BB1D1D=×1××=.法二 连接BD1,将四棱锥A1-BB1D1D分成两个三棱锥B-A1DD1与B-A1B1D1,VA1-BB1D1D=VB-A1DD1+VB-A1B1D1=××1×1×1+××1×1×1=.答案 \n8.(2020·沈阳一监)农历五月初五是端午节,民间有吃粽子的习俗,粽子又称“粽籺”,故称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图(1)的平行四边形形状的纸片是由六个边长为1的正三角形组成的,将它沿虚线折起来,可以得到如图(2)的粽子形状的六面体,则该六面体的体积为________;若该六面体内有一球,则该球的体积的最大值为________.解析 由对称性可知该六面体是由两个全等的正四面体合成的,正四面体的棱长为1,则正四面体的高为=,所以正四面体的体积为××1××=.因为该六面体的体积是正四面体体积的2倍,所以该六面体的体积是.要使球的体积达到最大,则球与该六面体的六个面都要相切.连接球心和六面体的五个顶点,把六面体分成了六个全等的三棱锥.设球的半径为R,则=6×,解得R=,所以球的体积V=R3=×=.答案  三、解答题9.(2020·全国Ⅰ卷)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为π,求三棱锥P-ABC的体积.(1)证明 由题设可知,PA=PB=PC.由△ABC是正三角形,可得△PAC≌△PAB,△PAC≌△PBC.又∠APC=90°,故∠APB=90°,∠BPC=90°.\n从而PB⊥PA,PB⊥PC,又PA,PC⊂平面PAC,PA∩PC=P,故PB⊥平面PAC,又PB⊂平面PAB,所以平面PAB⊥平面PAC.(2)解 设圆锥的底面半径为r,母线长为l,由题设可得rl=,l2-r2=2,解得r=1,l=.从而AB=.由(1)可得PA2+PB2=AB2,故PA=PB=PC=.所以三棱锥P-ABC的体积为··PA·PB·PC=××=.10.如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,PA=PB,AD∥BC,AB=AC,AD=BC=1,PD=3,∠BAD=120°,M为PC的中点.(1)证明:DM∥平面PAB;(2)求四面体MABD的体积.(1)证明 取PB中点N,连接MN,AN.∵M为PC的中点,∴MN∥BC且MN=BC,又AD∥BC,且AD=BC,得MN綉AD.∴ADMN为平行四边形,∴DM∥AN.又AN⊂平面PAB,DM⊄平面PAB,∴DM∥平面PAB.(2)解 取AB中点O,连接PO,∵PA=PB,∴PO⊥AB,又∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PO⊂平面PAB,则PO⊥平面ABCD,取BC中点H,连接AH,∵AB=AC,∴AH⊥BC,又∵AD∥BC,∠BAD=120°,∴∠ABC=60°,Rt△ABH中,BH=BC=1,AB=2,∴AO=1,又AD=1,△AOD中,由余弦定理知,OD=.\nRt△POD中,PO==.又S△ABD=AB·ADsin120°=,∴VM-ABD=·S△ABD·PO=.B级 能力突破11.(2019·全国Ⅰ卷)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为(  )A.8πB.4πC.2πD.π解析 因为点E,F分别为PA,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为,所以该正方体的体对角线长为,所以三棱锥P-ABC的外接球的半径R=.所以球O的体积V=πR3=π=π.答案 D12.(2020·江南十校联考)如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AB∥CD,CD=2AB=4,AD=,△PAB为等腰直角三角形,PA=PB,平面PAB⊥底面ABCD,E为PD的中点.(1)求证:AE∥平面PBC;(2)求三棱锥P-EBC的体积.(1)证明 如图,取PC的中点F,连接EF,BF,\n∵PE=DE,PF=CF,∴EF∥CD,CD=2EF,∵AB∥CD,CD=2AB,∴AB∥EF,且EF=AB.∴四边形ABFE为平行四边形,∴AE∥BF.∵BF⊂平面PBC,AE⊄平面PBC.故AE∥平面PBC.(2)解 由(1)知AE∥平面PBC,∴点E到平面PBC的距离与点A到平面PBC的距离相等,∴VP-EBC=VE-PBC=VA-PBC=VP-ABC.如图,取AB的中点O,连接PO,∵PA=PB,∴OP⊥AB.∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,OP⊂平面PAB,∴OP⊥平面ABCD.∵△PAB为等腰直角三角形,PA=PB,AB=2,∴OP=1.∵四边形ABCD为等腰梯形,且AB∥CD,CD=2AB=4,AD=,∴梯形ABCD的高为1,∴S△ABC=×2×1=1.故VP-EBC=VP-ABC=×1×1=.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 22:21:01 页数:15
价格:¥3 大小:815.00 KB
文章作者:U-336598

推荐特供

MORE