首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
三轮冲刺
>
2023高考数学二轮复习专题练四考前冲刺高分考前冲刺一12类二级结论高效解题含解析202303112195
2023高考数学二轮复习专题练四考前冲刺高分考前冲刺一12类二级结论高效解题含解析202303112195
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/15
2
/15
剩余13页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
四、考前冲刺高分考前冲刺一 12类二级结论高效解题高中数学二级结论在解题中有其高明之处,不仅简化思维过程,而且可以提高解题速度和准确度,记住这些常用二级结论,可以帮你理清数学套路,节约做题时间,从而轻松拿高分.结论1 奇函数的最值性质已知函数f(x)是定义在区间D上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0,且若0∈D,则f(0)=0.【例1】设函数f(x)=的最大值为M,最小值为m,则M+m=________.解析 显然函数f(x)的定义域为R,f(x)==1+,设g(x)=,则g(-x)=-g(x),∴g(x)为奇函数,由奇函数图象的对称性知g(x)max+g(x)min=0,∴M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.答案 2【训练1】已知函数f(x)=ln(-3x)+1,则f(lg2)+f=( )\nA.-1B.0C.1D.2解析 令g(x)=ln(-3x),x∈R,则g(-x)=ln(+3x),因为g(x)+g(-x)=ln(-3x)+ln(+3x)=ln(1+9x2-9x2)=ln1=0,所以g(x)是定义在R上的奇函数.又lg=-lg2,所以g(lg2)+g=0,所以f(lg2)+f=g(lg2)+1+g+1=2.答案 D结论2 函数周期性问题已知定义在R上的函数f(x),若对任意的x∈R,总存在非零常数T,使得f(x+T)=f(x),则称f(x)是周期函数,T为其一个周期.常见的与周期函数有关的结论如下:(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.(2)如果f(x+a)=(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.(3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.【例2】(1)已知定义在R上的函数f(x)满足f=-f(x),且f(-2)=f(-1)=-1,f(0)=2,则f(1)+f(2)+f(3)+…+f(2019)+f(2020)=( )A.-2B.-1C.0D.1(2)(多选题)(2020·济南模拟)函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则( )A.f(x)为奇函数B.f(x)为周期函数C.f(x+3)为奇函数D.f(x+4)为偶函数解析 (1)因为f=-f(x),所以f(x+3)=-f=f(x),则f(x)的周期T=3.则有f(1)=f(-2)=-1,f(2)=f(-1)=-1,f(3)=f(0)=2,所以f(1)+f(2)+f(3)=0,所以f(1)+f(2)+f(3)+…+f(2019)+f(2020)=f(1)+f(2)+f(3)+…+f(2017)+f(2018)+f(2019)+f(2020)=673×[f(1)+f(2)+f(3)]+f(2020)=0+f(1)=-1.(2)法一 由f(x+1)与f(x+2)都为奇函数知,函数f(x)的图象关于点(1,0),(2,0)对称,所以\nf(-x)+f(2+x)=0,f(-x)+f(4+x)=0,所以f(2+x)=f(4+x),即f(x)=f(2+x),所以f(x)是以2为周期的周期函数.又f(x+1)与f(x+2)都为奇函数,所以f(x),f(x+3),f(x+4)均为奇函数.故选ABC.法二 由f(x+1)与f(x+2)都为奇函数知,函数f(x)的图象关于点(1,0),(2,0)对称,所以f(x)的周期为2|2-1|=2,所以f(x)与f(x+2),f(x+4)的奇偶性相同,f(x+1)与f(x+3)的奇偶性相同,所以f(x),f(x+3),f(x+4)均为奇函数.故选ABC.答案 (1)B (2)ABC【训练2】奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=( )A.-2B.-1C.0D.1解析 由f(x+2)是偶函数可得f(-x+2)=f(x+2),又由f(x)是奇函数得f(-x+2)=-f(x-2),所以f(x+2)=-f(x-2),f(x+4)=-f(x),f(x+8)=f(x).故f(x)是以8为周期的周期函数,所以f(9)=f(8+1)=f(1)=1.又f(x)是定义在R上的奇函数,所以f(0)=0,所以f(8)=f(0)=0,故f(8)+f(9)=1.答案 D结论3 函数的对称性已知函数f(x)是定义在R上的函数.(1)若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x=对称,特别地,若f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a对称.(2)若函数y=f(x)满足f(a+x)+f(a-x)=0,即f(x)=-f(2a-x),则f(x)的图象关于点(a,0)对称.(3)若f(a+x)+f(a-x)=2b恒成立,则y=f(x)的图象关于点(a,b)对称.【例3】(1)函数y=f(x)对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)的值为________.(2)(多选题)已知定义在R上的函数f(x)满足f(x)=2-f(2-x),且f(x)是偶函数,下列说法正确的是( )A.f(x)的图象关于点(1,1)对称B.f(x)是周期为4的函数C.若f(x)满足对任意的x∈[0,1],都有<0,则f(x)在[-3,-2]上单调递增\nD.若f(x)在[1,2]上的解析式为f(x)=lnx+1,则f(x)在[2,3]上的解析式为f(x)=1-ln(x-2)解析 (1)因为函数y=f(x-1)的图象关于点(1,0)对称,所以f(x)是R上的奇函数,又f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),故f(x)的周期为4.所以f(2017)=f(504×4+1)=f(1)=4,所以f(2016)+f(2018)=-f(2014)+f(2014+4)=-f(2014)+f(2014)=0,所以f(2016)+f(2017)+f(2018)=4.(2)根据题意,f(x)的图象关于点(1,1)对称,A正确;又f(x)的图象关于y轴对称,所以f(x)=f(-x),则2-f(2-x)=f(-x),f(x)=2-f(x+2),从而f(x+2)=2-f(x+4),所以f(x)=f(x+4),B正确;由<0可知f(x)在[0,1]上单调递增,又f(x)的图象关于点(1,1)对称,所以f(x)在[1,2]上单调递增,因为f(x)的周期为4,所以f(x)在[-3,-2]上单调递增,C正确;因为f(x)=f(-x),x∈[-2,-1]时,-x∈[1,2],所以f(x)=f(-x)=ln(-x)+1,x∈[-2,-1],因为f(x)的周期为4,f(x)=f(x-4),x∈[2,3]时,x-4∈[-2,-1],所以f(x)=f(x-4)=ln(4-x)+1,x∈[2,3],D错误.综上,正确的是ABC.答案 (1)4 (2)ABC【训练3】(1)若函数y=f(x)的图象如图所示,则函数y=f(1-x)的图象大致为( )\n(2)若偶函数y=f(x)的图象关于直线x=2对称,且f(3)=3,则f(-1)=________.解析 (1)作出y=f(x)的图象关于y轴对称的图象,得到y=f(-x)的图象,将y=f(-x)的图象向右平移1个单位,得y=f[-(x-1)]=f(1-x)的图象.因此图象A满足.(2)因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x),又f(-x)=f(x),所以f(x)=f(x+4),则f(-1)=f(3)=3.答案 (1)A (2)3结论4 两个经典不等式(1)对数形式:x≥1+lnx(x>0),当且仅当x=1时,等号成立.(2)指数形式:ex≥x+1(x∈R),当且仅当x=0时,等号成立.进一步可得到一组不等式链:ex>x+1>x>1+lnx(x>0,且x≠1).【例4】已知函数f(x)=x-1-alnx.(1)若f(x)≥0,求a的值;(2)证明:对于任意正整数n,…<e.(1)解 f(x)的定义域为(0,+∞),①若a≤0,因为f=-+aln2<0,所以不满足题意.②若a>0,由f′(x)=1-=知,当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0;所以f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,故x=a是f(x)在(0,+∞)的唯一最小值点.因为f(1)=0,所以当且仅当a=1时,f(x)≥0,故a=1.(2)证明 由(1)知当x∈(1,+∞)时,x-1-lnx>0.令x=1+,得ln<.从而ln+ln+…+ln<++…+=1-<1.故…<e.【训练4】(1)已知函数f(x)=,则y=f(x)的图象大致为( )\n解析 由得{x|x>-1,且x≠0},所以排除选项D.当x>0时,由经典不等式x>1+lnx(x>0),以x+1代替x,得x>ln(x+1)(x>-1,且x≠0),所以ln(x+1)-x<0(x>-1,且x≠0),排除A,C,易知B正确.答案 B(2)已知函数f(x)=ex,x∈R.证明:曲线y=f(x)与曲线y=x2+x+1有唯一公共点.证明 令g(x)=f(x)-=ex-x2-x-1,x∈R,则g′(x)=ex-x-1,由经典不等式ex≥x+1恒成立可知,g′(x)≥0恒成立,所以g(x)在R上为增函数,且g(0)=0.所以函数g(x)有唯一零点,即两曲线有唯一公共点.结论5 三点共线的充要条件设平面上三点O,A,B不共线,则平面上任意一点P与A,B共线的充要条件是存在实数λ与μ,使得=λ+μ,且λ+μ=1.特别地,当P为线段AB的中点时,=+.【例5】在△ABC中,=2,=3,连接BF,CE,且BF与CE交于点M,=x+y,则x-y等于( )A.-B.C.-D.解析 因为=2,所以=,所以=x+y=x+y.\n由B,M,F三点共线得x+y=1.①因为=3,所以=,所以=x+y=x+y.由C,M,E三点共线得x+y=1.②联立①②解得所以x-y=-=-.答案 C【训练5】在梯形ABCD中,已知AB∥CD,AB=2CD,M,N分别为CD,BC的中点.若=λ+μ,则λ+μ=________.解析 如图,连接MN并延长交AB的延长线于T.由已知易得AB=AT,∴==λ+μ,∴=λ+μ,∵T,M,N三点共线,∴λ+μ=1,∴λ+μ=.答案 结论6 三角形“四心”向量形式的充要条件设O为△ABC所在平面上一点,内角A,B,C所对的边分别为a,b,c,则(1)O为△ABC的外心⇔||=||=||=.(2)O为△ABC的重心⇔++=0.(3)O为△ABC的垂心⇔·=·=·.(4)O为△ABC的内心⇔a+b+c=0.\n【例6】P是△ABC所在平面内一点,若·=·=·,则P是△ABC的( )A.外心B.内心C.重心D.垂心解析 由·=·,可得·(-)=0,即·=0,∴⊥,同理可证⊥,⊥.∴P是△ABC的垂心.答案 D【训练6】O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足=+λ,λ∈R,则P点的轨迹一定经过△ABC的( )A.外心B.内心C.重心D.垂心解析 设BC的中点为M,则=,则有=+λ,即=λ.∴P的轨迹一定通过△ABC的重心.答案 C结论7 与等差数列相关的结论已知等差数列{an},公差为d,前n项和为Sn.(1)若Sm,S2m,S3m分别为等差数列{an}的前m项、前2m项、前3m项的和,则Sm,S2m-Sm,S3m-S2m成等差数列.(2)若等差数列{an}的项数为偶数2m,公差为d,所有奇数项之和为S奇,所有偶数项之和为S偶,则所有项之和S2m=m(am+am+1),S偶-S奇=md,=.(3)若等差数列{an}的项数为奇数2m-1,所有奇数项之和为S奇,所有偶数项之和为S偶,则所有项之和S2m-1=(2m-1)am,S奇-S偶=am,=.【例7】(1)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( )A.3B.4C.5D.6(2)等差数列{an}的前n项和为Sn,已知am-1+am+1-a=0,S2m-1=38,则m=________.解析 (1)∵数列{an}为等差数列,且前n项和为Sn,∴数列也为等差数列.\n∴+=,即+=0,解得m=5.经检验,m=5符合题意.(2)由am-1+am+1-a=0得2am-a=0,解得am=0或2.又S2m-1==(2m-1)am=38,显然可得am≠0,所以am=2.代入上式可得2m-1=19,解得m=10.答案 (1)C (2)10【训练7】(1)等差数列{an}的前n项和为Sn,若S10=20,S20=50,则S30=________.(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d=________.解析 (1)(S20-S10)-S10=(S30-S20)-(S20-S10),S30=3S20-3S10=3×50-3×20=90.(2)设等差数列的前12项中奇数项和为S奇,偶数项的和为S偶,等差数列的公差为d.由已知条件,得解得又S偶-S奇=6d,所以d==5.答案 (1)90 (2)5结论8 与等比数列相关的结论已知等比数列{an},公比为q,前n项和为Sn.(1)数列也为等比数列,其公比为.(2)公比q≠-1或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n,…成等比数列(n∈N*).(3)若等比数列的项数为2n(n∈N*),公比为q,奇数项之和为S奇,偶数项之和为S偶,则S偶=qS奇.(4)已知等比数列{an},公比为q,前n项和为Sn.则Sm+n=Sm+qmSn(m,n∈N*).【例8】(1)设等比数列{an}的前n项和为Sn,若=3,则=( )A.2B.C.D.3解析 由已知=3,得S6=3S3且q≠-1,因为S3,S6-S3,S9-S6也为等比数列,所以(S6-S3)2=S3(S9-S6),则(2S3)2=S3(S9-3S3).化简得S9=7S3,从而==.答案 B\n(2)已知等比数列{an}的前n项和为Sn,且满足S3=,S6=.①求数列{an}的通项公式;②求log2a1+log2a2+log2a3+…+log2a25的值.解 ①由S3=,S6=,得S6=S3+q3S3=(1+q3)S3,∴q=2.又S3=a1(1+q+q2),得a1=.故通项公式an=×2n-1=2n-2.②由①及题意可得log2an=n-2,所以log2a1+log2a2+log2a3+…+log2a25=-1+0+1+2+…+23==275.【训练8】已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列的前5项和为( )A.或5B.或5C.D.解析 设等比数列{an}的公比为q,易知S3≠0.则S6=S3+S3q3=9S3,所以q3=8,q=2.所以数列是首项为1,公比为的等比数列,其前5项和为=.答案 C结论9 多面体的外接球和内切球(1)长方体的体对角线长d与共点的三条棱长a,b,c之间的关系为d2=a2+b2+c2;若长方体外接球的半径为R,则有(2R)2=a2+b2+c2.(2)棱长为a的正四面体内切球半径r=a,外接球半径R=a.【例9】已知一个平放的各棱长为4的三棱锥内有一个小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥的各侧面均相切(与水面也相切),则小球的表面积等于( )A.B.C.D.解析 当注入水的体积是该三棱锥体积的时,设水面上方的小三棱锥的棱长为x(各棱长都相等).\n依题意,=,得x=2,易得小三棱锥的高为.设小球半径为r,则S底面·=4×S底面·r(S底面为小三棱锥的底面积),得r=.故小球的表面积S=4πr2=.答案 C【训练9】(1)已知直三棱柱的底面是等腰直角三角形,直角边长是1,且其外接球的表面积是16π,则该三棱柱的侧棱长为( )A.B.2C.4D.3(2)已知球O的直径PA=2r,B,C是该球面上的两点,且BC=PB=PC=r,三棱锥P-ABC的体积为,则球O的表面积为( )A.64πB.32πC.16πD.8π解析 (1)由于直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形.把直三棱柱ABC-A1B1C1补成正四棱柱,则正四棱柱的体对角线是其外接球的直径,因为外接球的表面积是16π,所以外接球半径为2,因为直三棱柱的底面是等腰直角三角形,斜边长,所以该三棱柱的侧棱长为=.(2)如图,取PA的中点O,则O为球心,连接OB,OC,则几何体O-BCP是棱长为r的正四面体,所以VO-BCP=r3,于是VP-ABC=2VO-BCP=r3,令r3=,得r=4.从而S球=4π×42=64π.答案 (1)A (2)A结论10 焦点三角形的面积公式(1)在椭圆+=1(a>b>0)中,F1,F2分别为左、右焦点,P为椭圆上一点,则△PF1F2的面积S△PF1F2=b2·tan,其中θ=∠F1PF2.(2)在双曲线-=1(a>0,b>0)中,F1,F2分别为左、右焦点,P为双曲线上一点,则△PF1F2\n的面积S△PF1F2=,其中θ=∠F1PF2.【例10】如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是( )A.B.C.D.解析 设双曲线C2的方程为-=1,则有a+b=c=c=4-1=3.又四边形AF1BF2为矩形,所以△AF1F2的面积为btan45°=,即b=b=1.所以a=c-b=3-1=2.故双曲线的离心率e===.答案 D【训练10】已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上一点,且⊥.若△PF1F2的面积为9,则b=________.解析 在焦点三角形PF1F2中,⊥,所以∠F1PF2=90°,故S△PF1F2=b2tan=b2tan45°=9,则b=3.答案 3结论11 圆锥曲线的切线问题(1)过圆C:(x-a)2+(y-b)2=R2上一点P(x0,y0)的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=R2.(2)过椭圆+=1上一点P(x0,y0)的切线方程为+=1.(3)已知点M(x0,y0),抛物线C:y2=2px(p≠0)和直线l:y0y=p(x+x0).①当点M在抛物线C上时,直线l与抛物线C相切,其中M为切点,l为切线.②当点M在抛物线C外时,直线l与抛物线C相交,其中两交点与点M\n的连线分别是抛物线的切线,即直线l为切点弦所在的直线.【例11】已知抛物线C:x2=4y,直线l:x-y-2=0,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点,当点P(x0,y0)为直线l上的定点时,求直线AB的方程.解 联立方程得消去y,整理得x2-4x+8=0,Δ=(-4)2-4×8=-16<0,故直线l与抛物线C相离.由结论知,P在抛物线外,故切点弦AB所在的直线方程为x0x=2(y+y0),即y=x0x-y0.【训练11】(1)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为( )A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=0(2)设椭圆C:+=1,点P,则椭圆C在点P处的切线方程为________________.解析 (1)如图,圆心坐标为C(1,0),易知A(1,1).又kAB·kPC=-1,且kPC==,∴kAB=-2.故直线AB的方程为y-1=-2(x-1),即2x+y-3=0.(2)由于点P在椭圆+=1上,故切线方程为+=1,即x+2y-4=0.答案 (1)A (2)x+2y-4=0结论12 过抛物线y2=2px(p>0)焦点的弦设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(xA,yA),B(xB,yB),则(1)xA·xB=.(2)yA·yB=-p2.\n(3)|AB|=xA+xB+p=(α是直线AB的倾斜角).【例12】过抛物线y2=4x的焦点F的直线l与抛物线交于A,B两点,若|AF|=2|BF|,则|AB|等于( )A.4B.C.5D.6解析 由对称性不妨设点A在x轴的上方,如图设A,B在准线上的射影分别为D,C,作BE⊥AD于E,设|BF|=m,直线l的倾斜角为θ,则|AB|=3m,由抛物线的定义知|AD|=|AF|=2m,|BC|=|BF|=m,所以cosθ==,∴sin2θ=.又y2=4x,知2p=4,故利用弦长公式|AB|==.答案 B【训练12】设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A.B.C.D.解析 法一 由已知得焦点坐标为F,因此直线AB的方程为y=,即4x-4y-3=0.与抛物线方程联立,化简得4y2-12y-9=0,故|yA-yB|==6.因此S△OAB=|OF||yA-yB|=××6=.\n法二 由2p=3,及|AB|=得|AB|===12.原点到直线AB的距离d=|OF|·sin30°=,故S△AOB=|AB|·d=×12×=.答案 D
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
(新课标)高考物理 考前预测冲刺模拟卷四
2023高考数学二轮复习专题练四考前冲刺高分考前冲刺四考前回归教材成功赢得高考含解析202303112194
2023高考数学二轮复习专题练四考前冲刺高分考前冲刺二压轴小题“瓶颈”突破含解析202303112192
2023高考数学二轮复习专题练四考前冲刺高分考前冲刺三多选题开放探究型解答题突破含解析202303112193
文档下载
收藏
所属:
高考 - 三轮冲刺
发布时间:2022-08-25 22:20:50
页数:15
价格:¥3
大小:1.22 MB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划