2023高考数学统考一轮复习第8章平面解析几何第5节第1课时椭圆及其性质教师用书教案理新人教版202303081245
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
椭圆[考试要求] 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率).3.理解数形结合思想.4.了解椭圆的简单应用.1.椭圆的定义(1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a>|F1F2|时,M点的轨迹为椭圆;②当2a=|F1F2|时,M点的轨迹为线段F1F2;③当2a<|F1F2|时,M点的轨迹不存在.2.椭圆的标准方程和几何性质标准方程+=1(a>b>0)+=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)离心率e=,且e∈(0,1)a,b,c的关系c2=a2-b2\n1.点P(x0,y0)和椭圆的位置关系(1)点P(x0,y0)在椭圆内⇔+<1.(2)点P(x0,y0)在椭圆上⇔+=1.(3)点P(x0,y0)在椭圆外⇔+>1.2.焦点三角形如图,椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.设r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中:(1)当r1=r2,即点P的位置为短轴端点时,θ最大;(2)S=b2tan=c|y0|,当|y0|=b,即点P的位置为短轴端点时,S取最大值,最大值为bc.(3)a-c≤|PF1|≤a+c.(4)|PF1|=a+ex0,|PF2|=a-ex0.(5)当PF2⊥x轴时,点P的坐标为.(6)4c2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ.3.椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.4.已知过焦点F1的弦AB,则△ABF2的周长为4a.5.椭圆中点弦的斜率公式若M(x0,y0)是椭圆+=1(a>b>0)的弦AB(AB不平行y轴)的中点,则有kAB·kOM=-,即kAB=-.6.弦长公式:直线与圆锥曲线相交所得的弦长|AB|=|x1-x2|==|y1-y2|=(k为直线的斜率).\n一、易错易误辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( )(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).( )(3)椭圆的离心率e越大,椭圆就越圆.( )(4)关于x,y的方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.( )[答案] (1)× (2)√ (3)× (4)√二、教材习题衍生1.设P是椭圆+=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于( )A.4 B.5 C.8 D.10D [依椭圆的定义知:|PF1|+|PF2|=2×5=10.]2.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则椭圆C的方程是( )A.+=1B.+=1C.+=1D.+=1D [设椭圆的标准方程为+=1(a>b>0).因为椭圆的一个焦点为F(1,0),离心率e=,所以解得故椭圆C的标准方程为+=1.]3.若方程+=1表示椭圆,则k的取值范围是.(3,4)∪(4,5) [由已知得解得3<k<5且k≠4.]4.已知点P是椭圆+=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为.或 [设P(xP,yP),xP>0,由题意知|F1F2|=2.则S=×|F1F2|×|yP|=1,解得|yP|=1.\n代入椭圆的方程,得+=1,解得xP=,因此点P的坐标为或.]第1课时 椭圆及其性质考点一 椭圆的定义及其应用 椭圆定义的应用类型及方法(1)探求轨迹:确认平面内与两定点有关的轨迹是不是椭圆.(2)应用定义转化:涉及焦半径的问题,常利用|PF1|+|PF2|=2a实现等量转换.(3)焦点三角形问题:常把正、余弦定理同椭圆定义相结合,求焦点、三角形的面积等问题.[典例1] (1)已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为( )A.-=1B.+=1C.-=1D.+=1(2)如图,椭圆+=1(a>2)的左、右焦点分别为F1,F2,点P是椭圆上的一点,若∠F1PF2=60°,那么△PF1F2的面积为( )A.B.C.D.(3)设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|-|PF1|的最小值为.(1)D (2)D (3)-5 [(1)设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)=16>8=|C1C2|,所以M的轨迹是以C1,C2为焦点的椭圆,且2a=16,2c=8,故所求的轨迹方程为+\n=1.(2)由题意知|PF1|+|PF2|=2a,|F1F2|2=4a2-16,由余弦定理得4a2-16=|PF1|2+|PF2|2-2|PF1||PF2|cos60°,即4a2-16=(|PF1|+|PF2|)2-3|PF1||PF2|,∴|PF1||PF2|=,∴S=|PF1||PF2|sin60°=,故选D.(3)由题意知,点M在椭圆外部,且|PF1|+|PF2|=10,则|PM|-|PF1|=|PM|-(10-|PF2|)=|PM|+|PF2|-10≥|F2M|-10(当且仅当点P,M,F2三点共线时等号成立).又F2(3,0),则|F2M|==5.∴|PM|-|PF1|≥-5,即|PM|-|PF1|的最小值为-5.]点评:解答本例T(3)的关键是差式(|PM|-|PF1|)转化为和式(|PM|+|PF2|-10).而转化的依据为|PF1|+|PF2|=2a.1.已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为( )A.+=1B.-=1C.-=1D.+=1D [由题意得|PA|=|PB|,∴|PA|+|PF|=|PB|+|PF|=r=2>|AF|=2,∴点P的轨迹是以A,F为焦点的椭圆,且a=,c=1,∴b=,∴动点P的轨迹方程为+=1,故选D.]2.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一点,且PF1⊥PF2,若△PF1F2的面积为9,则b=.3 [法一:设|PF1|=r1,|PF2|=r2,则所以2r1r2=(r1+r2)2-(r+r)=4a2-4c2=4b2,所以S△PF1F2=r1r2=b2=9,所以b=3.法二:∵PF1⊥PF2,∴∠F1PF2=90°,\n∴S=b2tan45°=9,∴b2=9,∴b=3.]考点二 求椭圆的标准方程 待定系数法求椭圆标准方程的一般步骤[典例2] (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,(,),则椭圆方程为.(2)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方程为.(3)已知中心在坐标原点的椭圆过点A(-3,0),且离心率e=,则椭圆的标准方程为.(1)+=1 (2)+=1 (3)+=1或+=1 [(1)设椭圆方程为mx2+ny2=1(m,n>0,m≠n).由解得m=,n=.∴椭圆方程为+=1.(2)法一:椭圆+=1的焦点为(0,-4),(0,4),即c=4.由椭圆的定义知,2a=+,解得a=2.由c2=a2-b2可得b2=4,∴所求椭圆的标准方程为+=1.\n法二:∵所求椭圆与椭圆+=1的焦点相同,∴其焦点在y轴上,且c2=25-9=16.设它的标准方程为+=1(a>b>0).∵c2=16,且c2=a2-b2,故a2-b2=16.①又点(,-)在所求椭圆上,∴+=1,则+=1.②由①②得b2=4,a2=20,∴所求椭圆的标准方程为+=1.(3)若焦点在x轴上,由题知a=3,因为椭圆的离心率e=,所以c=,b=2,所以椭圆方程是+=1.若焦点在y轴上,则b=3,a2-c2=9,又离心率e==,解得a2=,所以椭圆方程是+=1.综上,椭圆的方程为+=1或+=1.]点评:利用待定系数法要先定形(焦点位置),再定量,即首先确定焦点所在位置,然后根据条件建立关于a,b的方程组.如果焦点位置不确定,那么可设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n).1.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,过F2的直线l交C于A,B两点,若△AF1B的周长为12,则椭圆C的标准方程为( )A.+y2=1B.+=1C.+=1D.+=1D [由椭圆的定义,知|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,所以△AF1B的周长为|AF1\n|+|AF2|+|BF1|+|BF2|=4a=12,所以a=3.因为椭圆的离心率e==,所以c=2,所以b2=a2-c2=5,所以椭圆C的方程为+=1,故选D.]2.(2020·通州模拟)设椭圆的对称轴为坐标轴,短轴的一个端点与两焦点是同一个正三角形的顶点,焦点与椭圆上的点的最短距离为,则这个椭圆的方程为,离心率为.+=1或+=1 [焦点与椭圆的最短距离为a-c=,a=2c,∴c=,a=2,b=3,∴椭圆方程为+=1或+=1.离心率e==.]考点三 椭圆的几何性质 1.求椭圆离心率或其范围的方法解题的关键是借助图形建立关于a,b,c的关系式(等式或不等式),转化为e的关系式,常用方法如下:(1)直接求出a,c,利用离心率公式e=求解.(2)由a与b的关系求离心率,利用变形公式e=求解.(3)构造a,c的齐次式.离心率e的求解中可以不求出a,c的具体值,而是得出a与c的关系,从而求得e.2.利用椭圆几何性质求值或范围的思路(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系.(2)将所求范围用a,b,c表示,利用a,b,c自身的范围、关系求解. 椭圆中的基本量a,b,c[典例3-1] 嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆有四个结论:\n①焦距长约为300公里 ②长轴长约为3988公里 ③两焦点坐标约为(±150,0) ④离心率约为则上述结论正确的是( )A.①②④B.①③④C.①④D.②③④C [设该椭圆的半长轴长为a,半焦距长为c.依题意可得月球半径约为×3476=1738,a-c=100+1738=1838,a+c=400+1738=2138,2a=1838+2138=3976,a=1988,c=2138-1988=150,椭圆的离心率约为e===,可得结论①④正确,②错误;因为没有给坐标系,焦点坐标不确定,所以③错误.故选C.]点评:探求椭圆的长轴、短轴、焦距等问题,只要抓住题设中的信息,直译解方程即可. 离心率[典例3-2] (1)(2018·全国卷Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为( )A.1-B.2-C.D.-1(2)已知F1,F2是椭圆+=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,则椭圆的离心率的取值范围是.(1)D (2) [(1)由题设知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,所以|PF2|=c,|PF1|=c.由椭圆的定义得|PF1|+|PF2|=2a,即c+c=2a,所以(+1)c=2a,故椭圆C的离心率e===-1.故选D.(2)若存在点P,则圆x2+y2=c2与椭圆有公共点,则∠F1BF2≥90°(B为短轴端点),即b≤c<a,即b2≤c2,∴a2-c2≤c2,∴a2≤2c2,\n∴≤e<1.]点评:与几何图形有关的离心率问题,常借助勾股定理、正(余)弦定理求解;对于(2)这种探索性问题常采用临界点法求解. 与椭圆有关的最值(范围问题)[典例3-3] (1)(2017·全国卷Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)(2)若点O和点F分别为椭圆+=1的中心和左焦点,若P为椭圆上的任意一点,则·的最大值为( )A.2B.3C.6D.8(1)A (2)C [(1)由题意知,当M在短轴顶点时,∠AMB最大.①如图1,当焦点在x轴,即m<3时,a=,b=,tanα=≥tan60°=,∴0<m≤1.图1 图2②如图2,当焦点在y轴,即m>3时,a=,b=,tanα=≥tan60°=,∴m≥9.综上,m的取值范围(0,1]∪[9,+∞),故选A.(2)由题意知,O(0,0),F(-1,0),设P(x,y),则=(x,y),=(x+1,y),∴·=x(x+1)+y2=x2+y2+x.又∵+=1,∴y2=3-x2,∴·=x2+x+3=(x+2)2+2.∵-2≤x≤2,∴当x=2时,·有最大值6.]点评:\n本例(1)的求解恰恰应用了焦点三角形中张角最大的情形,借助该临界点,然后数形结合求解;本例(2)的求解采用了先建模,再借助椭圆中变量x的有界性解模的思路.1.已知椭圆+=1的长轴在x轴上,焦距为4,则m等于( )A.8B.7C.6D.5A [因为椭圆+=1的长轴在x轴上,所以解得6<m<10.因为焦距为4,所以c2=m-2-10+m=4,解得m=8.]2.(2020·攀枝花模拟)如图,椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过椭圆上的点P作y轴的垂线,垂足为Q,若四边形F1F2PQ为菱形,则该椭圆的离心率为( )A.B.C.-1D.-1B [由题意,F1(-c,0),F2(c,0),因为四边形F1F2PQ为菱形,所以P(2c,c),将点P坐标代入+=1可得:+=1,整理得4c4-8a2c2+a4=0,所以4e4-8e2+1=0,因0<e<1,故e=.]
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)