首页

【高考总动员】2023高考数学大一轮复习 第10章 第2节 古典概型课时提升练 文 新人教版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

课时提升练(五十二) 古典概型一、选择题1.(2014·山西四校联考)从1、2、3、4这四个数中一次随机取两个,则取出的这两个数之和为偶数的概率是(  )A.    B.    C.    D.【解析】 从四个数中任取两个,共有1,2;1,3;1,4;2,3;2,4;3,4,共6种,其中和为偶数的情况有1,3;2,4,共2种.∴所求概率P==.【答案】 B2.(2014·沈阳四校联考)任取一个三位正整数N,则对数log2N是一个正整数的概率是(  )A.B.C.D.【解析】 三位正整数有900个,而满足log2N是正整数的N有27,28,29,共3个,故所求事件的概率P==.【答案】 C3.(2013·安徽高考)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为(  )A.B.C.D.【解析】 由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P=.【答案】 D4.(2014·浙江金华十校模拟)从5名医生(3男2女)中随机等可能地选派两名医生,则恰选1名男医生和1名女医生的概率为(  )A.B.C.D.5\n【解析】 记3名男医生分别为a1,a2,a3,2名女医生分别为b1,b2,从这5名医生中随机地选派两名医生,有以下10种选法:a1a2,a1a3,a1b1,a1b2,a2a3,a2b1,a2b2,a3b1,a3b2,b1b2,其中恰选1名男医生和1名女医生的有a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,共6种选法,故所求事件的概率为P==,选D.【答案】 D5.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N*),若事件Cn的概率最大,则n的所有可能值为(  )A.3B.4C.2和5D.3和4【解析】 分别从集合A和B中随机取一个数,确定平面上的一个点P(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6种情况,a+b=2的有1种情况,a+b=3的有2种情况,a+b=4的有2种情况,a+b=5的有1种情况,所以可知若事件Cn的概率最大,则n的所有可能值为3和4,故选D.【答案】 D6.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则θ∈的概率是(  )A.B.C.D.【解析】 ∵cosθ=,θ∈,∴m≥n满足条件,m=n的概率为=,m>n的概率为×=,∴θ∈的概率为+=.【答案】 C二、填空题7.(2014·江苏高考)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.【解析】 取两个数的所有情况有:(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6种情况.乘积为6的情况有:(1,6),(2,3),共2种情况.5\n所求事件的概率为=.【答案】 8.(2014·浙江高考)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.【解析】 记“两人都中奖”为事件A,设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),2种,所以P(A)==.【答案】 9.(2014·江苏扬州模拟)将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为________.【解析】 将一枚骰子抛掷两次共有36种结果:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),属于古典概型.方程x2+bx+c=0有实根,则Δ=b2-4c≥0,即b≥2,则A包含的结果有:(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(4,4),(5,4),(6,4),(5,5),(6,5),(5,6),(6,6),共19种,由古典概率的计算公式可得P(A)=.【答案】 三、解答题10.(2013·辽宁高考)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.解(1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:,,,,,,,,,,,,,,,共15个,而且这些基本事件的出现是等可能的.用A表示“都是甲类题”这一事件,则A包含的基本事件有,,5\n,,,,共6个,所以P(A)==.(2)基本事件同(1),用B表示“不是同一类题”这一事件,则B包含的基本事件有,,,,,,,,共8个,所以P(B)=.11.(2014·山西四校联考)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查.(1)求应从优秀生、中等生、学困生中分别抽取的学生人数;(2)若从抽取的6名学生中随机抽取2名学生做进一步数据分析;①列出所有可能的抽取结果;②求抽取的2名学生均为中等生的概率.【解】 (1)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.(2)①在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,则抽取2名学生的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,所以P(B)==.12.(2014·福建高考)根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035~4085美元为中等偏下收入国家;人均GDP为4085~12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A25%8000B30%4000C15%6000D10%3000E20%10000(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.5\n【解】 (1)设该城市人口总数为a,则该城市人均GDP为(8000×0.25a+4000×0.30a+6000×0.15a+3000×0.10a+10000×0.20a)=6400.因为6400∈[4085,12616),所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E),{C,D},{C,E},{D,E},共10个.设事件“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”为M,则事件M包含的基本事件是:{A,C},{A,E},{C,E},共3个,所以所求概率为P(M)=.5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 17:50:01 页数:5
价格:¥3 大小:55.50 KB
文章作者:U-336598

推荐特供

MORE