首页

全国版2023高考数学二轮复习专题检测十五直线与圆理含解析20230325160

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/10

2/10

剩余8页未读,查看更多内容需下载

专题检测(十五)直线与圆A组——“6+3+3”考点落实练一、选择题1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的(  )A.充要条件      B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C 因为两直线平行,所以斜率相等,即-=-,可得ab=4,又当a=1,b=4时,满足ab=4,但是两直线重合.故选C.2.已知直线l1过点(-2,0)且倾斜角为30°,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为(  )A.(3,)B.(2,)C.(1,)D.解析:选C 直线l1的斜率k1=tan30°=,因为直线l2与直线l1垂直,所以直线l2的斜率k2=-=-,所以直线l1的方程为y=(x+2),直线l2的方程为y=-(x-2),联立解得即直线l1与直线l2的交点坐标为(1,).故选C.3.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是(  )A.内切B.相交C.外切D.相离解析:选B 圆M:x2+y2-2ay=0(a>0)可化为x2+(y-a)2=a2,由题意,M(0,a)到直线x+y=0的距离d=,所以a2=+2,解得a=2.所以圆M:x2+(y-2)2=4,所以两圆的圆心距为,半径和为3,半径差为1,故两圆相交.故选B.4.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是(  )A.[2,6]B.[4,8]C.[,3]D.[2,3]解析:选A 设圆(x-2)2+y2=2的圆心为C,半径为r,点P到直线x+y\n+2=0的距离为d,则圆心C(2,0),r=,所以圆心C到直线x+y+2=0的距离为=2,可得dmax=2+r=3,dmin=2-r=.由已知条件可得|AB|=2,所以△ABP面积的最大值为|AB|·dmax=6,△ABP面积的最小值为|AB|·dmin=2.综上,△ABP面积的取值范围是[2,6].故选A.5.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点至少有2个,则实数a的取值范围为(  )A.(-3,3)B.(-∞,-3)∪(3,+∞)C.(-2,2)D.[-3,3]解析:选A 由圆的方程可知圆心为(0,0),半径为2.因为圆O上到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离d<r+1=2+1,即d==<3,解得a∈(-3,3).故选A.6.在平面直角坐标系中,O为坐标原点,直线x-ky+1=0与圆C:x2+y2=4相交于A,B两点,=+,若点M在圆C上,则实数k的值为(  )A.-2B.-1C.0D.1解析:选C 法一:设A(x1,y1),B(x2,y2),由得(k2+1)y2-2ky-3=0,则Δ=4k2+12(k2+1)>0,y1+y2=,x1+x2=k(y1+y2)-2=-,因为=+,故M,又点M在圆C上,故+=4,解得k=0.故选C.法二:由直线与圆相交于A,B两点,=+,且点M在圆C上,得圆心\nC(0,0)到直线x-ky+1=0的距离为半径的一半,为1,即d==1,解得k=0.故选C.二、填空题7.过点C(3,4)作圆x2+y2=5的两条切线,切点分别为A,B,则点C到直线AB的距离为________.解析:以OC为直径的圆的方程为+(y-2)2=,AB为圆C与圆O:x2+y2=5的公共弦,所以AB的方程为x2+y2-=5-,化简得3x+4y-5=0,所以C到直线AB的距离d==4.答案:48.已知直线l:ax-3y+12=0与圆M:x2+y2-4y=0相交于A,B两点,且∠AMB=,则实数a=________.解析:直线l的方程可变形为y=ax+4,所以直线l过定点(0,4),且该点在圆M上.圆的方程可变形为x2+(y-2)2=4,所以圆心为M(0,2),半径为2.如图,因为∠AMB=,所以△AMB是等边三角形,且边长为2,高为,即圆心M到直线l的距离为,所以=,解得a=±.答案:±9.(2019·浙江高考)已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.解析:法一:因为直线2x-y+3=0与以点(0,m)为圆心的圆相切,且切点为A(-2,-1),所以×2=-1,所以m=-2,r==.法二:根据题意画出图形,可知A(-2,-1),C(0,m),B(0,3),则|AB|==2,|AC|==,|BC|=|m-3|.∵直线2x-y+3=0与圆C相切于点A,\n∴∠BAC=90°,∴|AB|2+|AC|2=|BC|2.即20+4+(m+1)2=(m-3)2,解得m=-2.因此r=AC==.答案:-2 三、解答题10.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点.(1)求圆A的方程;(2)当|MN|=2时,求直线l的方程.解:(1)设圆A的半径为R.因为圆A与直线l1:x+2y+7=0相切,所以R==2.所以圆A的方程为(x+1)2+(y-2)2=20.(2)当直线l与x轴垂直时,易知x=-2符合题意;当直线l与x轴不垂直时,设直线l的方程为y=k(x+2),即kx-y+2k=0.由于|MN|=2,于是+()2=20,解得k=,此时,直线l的方程为3x-4y+6=0.所以所求直线l的方程为x=-2或3x-4y+6=0.11.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.解:(1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.设M(x,y),则=(x,y-4),=(2-x,2-y).由题设知·=0,\n故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2.由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上.又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以l的斜率为-,∴直线l的方程为y-2=-(x-2),即l的方程为x+3y-8=0.又|OM|=|OP|=2,O到l的距离为=,又N到直线l的距离为=,|PM|=2=,∴S△POM=××=.12.(2018·全国卷Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2),由得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=1或k=-1(舍去).因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),\n所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.B组——大题专攻强化练1.已知点M(-1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.(1)求曲线E的方程;(2)已知m≠0,设直线l1:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点.当CD的斜率为-1时,求直线CD的方程.解:(1)设曲线E上任意一点的坐标为(x,y),由题意得=·,整理得x2+y2-4x+1=0,即(x-2)2+y2=3为所求.(2)由题意知l1⊥l2,且两条直线均恒过点N(1,0).设曲线E的圆心为E,则E(2,0),设线段CD的中点为P,连接EP,ED,NP,则直线EP:y=x-2.设直线CD:y=-x+t,由解得点P,由圆的几何性质,知|NP|=|CD|=,而|NP|2=+=|PD|2,|ED|2=3,|EP|2=,由|PD|2=|ED|2-|EP|2,得+=3-,整理得t2-3t=0,解得t=0或t=3,所以直线CD的方程为y=-x或y=-x+3.2.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,\n圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.解:(1)因为圆心在直线l:y=2x-4上,也在直线y=x-1上,所以解方程组得圆心C(3,2),又因为圆的半径为1,所以圆的方程为(x-3)2+(y-2)2=1,又因为点A(0,3),显然过点A,圆C的切线的斜率存在,设所求的切线方程为y=kx+3,即kx-y+3=0,所以=1,解得k=0或k=-,所以所求切线方程为y=3或y=-x+3,即y-3=0或3x+4y-12=0.(2)因为圆C的圆心在直线l:y=2x-4上,所以设圆心C为(a,2a-4),又因为圆C的半径为1,则圆C的方程为(x-a)2+(y-2a+4)2=1.设M(x,y),又因为|MA|=2|MO|,则有=2,整理得x2+(y+1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D,所以点M既在圆C上,又在圆D上,即圆C与圆D有交点,所以2-1≤≤2+1,解得0≤a≤,所以圆心C的横坐标a的取值范围为.3.在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.解:(1)不能出现AC⊥BC的情况,理由如下:\n设A(x1,0),B(x2,0),则x1,x2满足x2+mx-2=0,所以x1x2=-2.又C的坐标为(0,1),故AC的斜率与BC的斜率之积为·=-,所以不能出现AC⊥BC的情况.(2)证明:由(1)知BC的中点坐标为,可得BC的中垂线方程为y-=x2.由(1)可得x1+x2=-m,所以AB的中垂线方程为x=-.联立可得所以过A,B,C三点的圆的圆心坐标为,半径r==.故圆在y轴上截得的弦长为2=3,即过A,B,C三点的圆在y轴上截得的弦长为定值.综上所述,过A,B,C三点圆在y轴上截得的弦长为定值.4.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且|BC|=|OA|,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.\n解:圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d==.因为|BC|=|OA|==2,而|MC|2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),+=,所以     ①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤≤5+5,解得2-2≤t≤2+2.\n

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:57:49 页数:10
价格:¥3 大小:198.00 KB
文章作者:U-336598

推荐特供

MORE