全国高考数学第二轮复习 专题升级训练29 解答题专项训练(立体几何) 理
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
专题升级训练29 解答题专项训练(立体几何)1.有一根长为3πcm,底面半径为2cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少?2.已知正四面体ABCD(图1),沿AB,AC,AD剪开,展成的平面图形正好是(图2)所示的直角梯形A1A2A3D(梯形的顶点A1,A2,A3重合于四面体的顶点A).(1)证明:AB⊥CD;(2)当A1D=10,A1A2=8时,求四面体ABCD的体积.3.一个多面体的直观图和三视图如图所示,其中M,G分别是AB,DF的中点.(1)求证:CM⊥平面FDM;(2)在线段AD上(含A,D端点)确定一点P,使得GP∥平面FMC,并给出证明.4.如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.(1)证明直线BC∥EF;(2)求棱锥F-OBED的体积.5.如图所示,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为多少?-7-\n6.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.(1)求证:BM∥平面ADEF;(2)求证:平面BDE⊥平面BEC;(3)求平面BEC与平面ADEF所成锐二面角的余弦值.7.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值.8.如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点.(1)证明:PF⊥FD;(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.-7-\n参考答案1.解:把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD(如图),由题意知BC=3πcm,AB=4πcm,点A与点C分别是铁丝的起、止位置,故线段AC的长度即为铁丝的最短长度.AC==5π(cm),故铁丝的最短长度为5πcm.2.(1)证明:在四面体ABCD中,∵⇒AB⊥平面ACD⇒AB⊥CD.(2)解:在题图2中作DE⊥A2A3于E.∵A1A2=8,∴DE=8.又∵A1D=A3D=10,∴EA3=6,A2A3=10+6=16.又A2C=A3C,∴A2C=8.即题图1中AC=8,AD=10,由A1A2=8,A1B=A2B得图1中AB=4.∴S△ACD=S△A3CD=DE·A3C=×8×8=32.又∵AB⊥面ACD,∴VB-ACD=×32×4=.3.解:由三视图可得直观图为直三棱柱且底面ADF中AD⊥DF,DF=AD=a.(1)证明:∵FD⊥平面ABCD,CM⊂平面ABCD,∴FD⊥CM.在矩形ABCD中,CD=2a,AD=a,M为AB中点,DM=CM=a,∴CM⊥DM.∵FD⊂平面FDM,DM⊂平面FDM,FD∩DM=D,∴CM⊥平面FDM.(2)点P在A点处.证明:取DC中点S,连接AS,GS,GA,∵G是DF的中点,∴GS∥FC.又AS∥CM,AS∩AG=A,∴平面GSA∥平面FMC.而GA⊂平面GSA,∴GP∥平面FMC.4.(1)证明:设G是线段DA与EB延长线的交点.由于△OAB与△ODE都是正三角形.所以OBDE,OG=OD=2.-7-\n同理,设G′是线段DA与FC延长线的交点,有OG′=OD=2.又由于G和G′都在线段DA的延长线上,所以G与G′重合.在△GED和△GFD中,由OBDE和OCDF,可知B和C分别是GE和GF的中点,所以BC是△GEF的中位线,故BC∥EF.(2)解:由OB=1,OE=2,∠EOB=60°,知S△EOB=,而△OED是边长为2的正三角形,故S△OED=.所以S四边形OBED=S△EOB+S△OED=.过点F作FQ⊥DG,交DG于点Q,由平面ABED⊥平面ACFD知,FQ就是四棱锥F-OBED的高,且FQ=,所以VF-OBED=FQ·S四边形OBED=.5.解:不妨设正三棱柱ABC-A1B1C1的棱长为2,建立如图所示空间直角坐标系,则C(0,0,0),A(,-1,0),B1(,1,2),D(,,2),则=(,,2),=(,1,2).设平面B1DC的法向量为n=(x,y,1),由解得n=(-,1,1).又∵,-7-\n∴sinθ=|cos〈,n〉|==.6.(1)证明:取DE中点N,连接MN,AN.在△EDC中,M,N分别为EC,ED的中点,所以MN∥CD,且MN=CD.由已知AB∥CD,AB=CD,所以MN∥AB,且MN=AB,所以四边形ABMN为平行四边形.所以BM∥AN.又因为AN⊂平面ADEF,且BM⊄平面ADEF,所以BM∥平面ADEF.(2)证明:在正方形ADEF中,ED⊥AD.又因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,所以ED⊥平面ABCD.所以ED⊥BC.在直角梯形ABCD中,AB=AD=2,CD=4,可得BC=2.在△BCD中,BD=BC=2,CD=4.所以BC⊥BD.所以BC⊥平面BDE.又因为BC⊂平面BCE,所以平面BDE⊥平面BEC.(3)解:由(2)知ED⊥平面ABCD,且AD⊥CD.以D为原点,DA,DC,DE所在直线为x,y,z轴,建立空间直角坐标系.B(2,2,0),C(0,4,0),E(0,0,2),平面ADEF的一个法向量为m=(0,1,0).设n=(x,y,z)为平面BEC的一个法向量,因为=(-2,2,0),=(0,-4,2),所以令x=1,得y=1,z=2.所以n=(1,1,2)为平面BEC的一个法向量.设平面BEC与平面ADEF所成锐二面角为θ,则cosθ===.所以平面BEC与平面ADEF所成锐二面角的余弦值为.7.(1)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=AD.从而BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD.因为PD∩AD=D,所以BD⊥平面PAD,故PA⊥BD.(2)解:如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D-xyz.则A(1,0,0),B(0,,0),C(-1,,0),P(0,0,1).-7-\n=(-1,,0),=(0,,-1),=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则即因此可取n=(,1,).设平面PBC的法向量为m,则可取m=(0,-1,-),cos〈m,n〉==-.故二面角A-PB-C的余弦值为-.8.(1)证明:∵PA⊥平面ABCD,∠BAD=90°,AB=1,AD=2,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),F(1,1,0),D(0,2,0).不妨令P(0,0,t),∵=(1,1,-t),=(1,-1,0),∴·=1×1+1×(-1)+(-t)×0=0,即PF⊥FD.(2)解:设平面PFD的法向量为n=(x,y,z),由得令z=1,解得:x=y=.∴.设G点坐标为(0,0,m),E,则,要使EG∥平面PFD,只需·n=0,即,得,从而满足AG=AP的点G即为所求.(3)解:∵AB⊥平面PAD,∴是平面PAD的法向量,易得=(1,0,0),又∵PA⊥平面ABCD,∴∠PBA是PB与平面ABCD所成的角,得∠PBA=45°,PA=1,平面PFD-7-\n的法向量为n=.∴cos〈,n〉==.故所求二面角A-PD-F的余弦值为.-7-
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)